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2Chapter 1: Implicit and Explicit Methods
Overview
Overview 
A detailed theory of Dytran® is outside the scope of this section. However, it is important to understand the 
basics of the solution technique, since it is critical to many aspects of the code and is completely different 
from the usual finite element programs with which you may be familiar. If you are already familiar with 
explicit methods and how they differ from the implicit methods, then you may disregard this section.

Implicit Methods
The majority of finite element programs use implicit methods to carry out a transient solution. Normally, 
they use Newmark schemes to integrate in time. If the current time step is step n, a good estimate of the 
acceleration at the end of step n + 1 will satisfy the following equation of motion:

where
 

and the prime denotes an estimated value.

The estimates of displacement and velocity are given by:

or

= mass matrix of the structure

= damping matrix of the structure

= stiffness matrix of the structure

= vector of externally applied loads at step n + 1

= estimate of acceleration at step n + 1

= estimate of velocity at step n + 1

= estimate of displacement at step n + 1

Ma'n 1+ Cv'n 1+ Kd'n 1++ + Fn 1+
ext=

M

C

K

Fn 1+
ext

a'n 1+

v'n 1+

d'n 1+

d'n 1+ dn vnΔt 1 2β–( )anΔt2( ) 2 βa'n 1++⁄ Δt2+ +=
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or

where  is the time step and  and  are constants.

The terms  and  are predictive and are based on values already calculated.

Substituting these values in the equation of motion results in

d'n 1+ dn
* βa'n 1+ Δt2+=

v'n 1+ vn
* γa'n 1+ Δt+=

v'n 1+ vn 1 γ–( )anΔt γa'n 1+ Δt+ +=

Δt β γ

dn
* vn

*

Ma'n 1+ C v*n γa'n 1+ Δt+( ) K d*n βa'n 1+ Δt2+( )+ + Fn 1+
ext=
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or

The equation of motion may then be defined as

The accelerations are obtained by inverting the  matrix as follows:

This is analogous to decomposing the stiffness matrix in a linear static analysis. However, the dynamics mean 
that mass and damping terms are also present.

Explicit Methods
The equation of motion

can be rewritten as

where

M CγΔt KβΔt2+ +[ ]a'n 1+ Fn 1+
ext Cvn

*– Kdn
*–=

M*a'n 1+ Fn 1+
residual=

M*

a'n 1+ M* 1– Fn 1+
residual=

=
vector of externally applied loads

=
vector of internal loads (e.g., forces generated by the 
elements and hourglass forces)

=

= mass matrix

Man Cvn Kdn+ + Fn
ext=

Man Fn
ext Fn

int–=

an M 1– Fn
residual=

Fn
ext

Fn
int

Fint Cvn Kdn+

M
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The acceleration can be found by inverting the mass matrix and multiplying it by the residual load vector.

If  is diagonal, its inversion is trivial, and the matrix equation is the set of independent equations for each 
degree of freedom is as follows:

The central difference scheme is used to advance in time:

This assumes that the acceleration is constant over the time step.

Explicit methods do not require matrix decompositions or matrix solutions. Instead, the loop is carried out 
for each time step as shown in the following diagram:

Implicit methods can be made unconditionally stable regardless of the size of the time step. However, for 
explicit codes to remain stable, the time step must subdivide the shortest natural period in the mesh. This 
means that the time step must be less than the time taken for a stress wave to cross the smallest element in 
the mesh. Typically, explicit time steps are 100 to 1000 times smaller than those used with implicit codes. 

M

ani Fni
residual Mi⁄=

vn 1 2⁄+ vn 1 2⁄– an Δtn 1 2⁄+ Δtn 1 2⁄–+( ) 2⁄+=

dn 1+ dn vn 1 2⁄+ Δtn 1 2⁄++=
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However, since each iteration does not involve the costly formulation and decomposition of matrices, explicit 
techniques are very competitive with implicit methods.
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Overview
Overview 
Dytran features two solving techniques, Lagrangian and Eulerian. The code can use either one, or both, and 
can couple the two types to define an interaction. 

The Lagrangian method is the most common finite element solution technique for engineering applications. 
The Eulerian solver is most frequently used for analyses of fluids or materials that undergo very large 
deformations.

Lagrangian Solver
When the Lagrangian solver is used, grid points are fixed to locations on the body being analyzed. Elements 
of material are created by connecting the grid points together, and the collection of elements produces a mesh. 
As the body deforms, the grid points move with the material and the elements distort (Figure 2-1). The 
Lagrangian solver is, therefore, calculating the motion of elements of constant mass.

Figure 2-1  Lagrangian Solver

Eulerian Solver
In the Eulerian solver, the grid points are fixed in space and the elements are simply partitions of the space 
defined by connected grid points. The Eulerian mesh is a “fixed frame of reference.” The material of a body 
under analysis moves through the Eulerian mesh; the mass, momentum, and energy of the material are 
transported from element to element. The Eulerian solver, therefore, calculates the motion of material 
through elements of constant volume (Figure 2-2).

It is important to note that the Eulerian mesh is defined in exactly the same manner as a Lagrangian mesh. 
General connectivity is used so the Eulerian mesh can be of an arbitrary shape and have an arbitrary 



Dytran Theory Manual
General Coupling

9

numbering system. This offers considerably more flexibility than the logical rectangular meshes used in other 
Eulerian codes.

Figure 2-2  Eulerian Solver

However, you should remember that the use of an Eulerian mesh is different from that of the Lagrangian type. 
The most important aspect of modeling with the Eulerian technique is that the mesh must be large enough 
to contain the material after deformation. A basic Eulerian mesh acts like a container and, unless specifically 
defined, the material cannot leave the mesh. Stress wave reflections and pressure buildup can develop from 
an Eulerian mesh that is too small for the analysis.

Eulerian and Lagrangian meshes can be used in the same calculation and can be coupled using a coupling 
surface. The surface acts as a boundary to the flow of material in the Eulerian mesh, while the stresses in the 
Eulerian material exerts forces on the surface causing the Lagrangian mesh to distort.

There are basically two methods to define the interaction between the Lagrangian and Eulerian solvers:

 General Coupling Method
 Arbitrary Lagrange Euler Coupling (ALE Method)

General Coupling
The objective of fluid-structure interaction using the coupling algorithm is to enable the material modeled 
in Eulerian and Lagrangian meshes to interact. Initially, the two solvers are entirely separate. Lagrangian 
elements that lie within an Eulerian mesh do not affect the flow of the Eulerian material and no forces are 
transferred from the Eulerian material back to the Lagrangian structure. The coupling algorithm computes 
the interaction between the two sets of elements. It thus enables complex fluid-structure interaction problems 
to be analyzed.

The first task in coupling the Eulerian and Lagrangian sections of a model is to create a surface on the 
Lagrangian structure. This surface is used to transfer the forces between the two solver domains (Figure 2-3). 
The surface acts as a boundary to the flow of material in the Eulerian mesh. At the same time, the stresses in 
the Eulerian elements cause forces to act on the coupling surface, distorting the Lagrangian elements.
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Figure 2-3  General Coupling 

By means of a SURFACE entry, you can define a multifaceted surface on the Lagrangian structure. A set of 
CFACE, CFACE1, CSEGs, element numbers, property numbers, material numbers, or any combination of these 
identify the element faces in this surface. The method of defining of the surface is, therefore, extremely 
flexible and can be adapted to individual modeling needs.

The coupling algorithm is activated using the COUPLE entry. It specifies that the surface is used for Euler-
Lagrange coupling. You can define whether the inside or the outside domain is covered by the coupling 
surface by setting the COVER field on the entry. This means that the Euler domain cannot contain material 
where it is covered by the outside or the inside of the Lagrangian structure. For problems where the Eulerian 
material is inside a Lagrangian structure (for example, an inflating air bag), COVER should be set to 
OUTSIDE since the Eulerian elements outside the coupling surface must be covered. For problems where 
the Eulerian material is outside the Lagrangian structure (for example a projectile penetrating soft material), 
the inside of the coupling surface must covered, and COVER should be set to INSIDE.

The coupling surface must have a positive volume to meet Dytran’s internal requirements. This means that 
the normals of all the segments of the surface must point outwards. By default, Dytran checks the direction 
of the normal vectors and automatically reverses them when necessary. However, if you wish to switch off the 
check to save some computational time in the generation of the problem, you can define this using the 
REVERSE field on the COUPLE entry.

The coupling algorithm activated using the COUPLE entry is the most general interaction algorithm. It can 
handle any Euler mesh. There is an option, however, to switch to a faster algorithm by setting the FASTCOUP 
parameter. This algorithm makes use of knowledge of the geometry of the Euler mesh. As a result, the 
requirement is that the Euler mesh must be aligned with the basic coordinate system axes.
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Closed Volume
The coupling surface must form a closed volume. This requirement is fundamental to the way the coupling 
works. It means that there can be no holes in the surface and the surface must be closed.

In order to create a closed volume, it may be necessary to artificially extend the coupling surface in some 
problems. In the following example (Figure 2-4), a plate modeled with shell elements is interacting with an 
Eulerian mesh. In order to form a closed coupling surface, dummy shell elements are added behind the plate. 
The shape of these dummy shell elements does not matter. However, it is best to use as few as possible to 
make the solution more efficient.

The closed volume formed by the coupling surface must intersect at least one Euler element; otherwise, the 
coupling surface is not recognized by the Eulerian mesh.

Care must be taken when doing so, however. The additional grid points created for the dummy elements do 
not move, since they are not connected to any structural elements. When the shell elements move so far that 
they pass beyond these stationary grid points, the coupling surface turns inside out and has a negative volume, 
causing Dytran to terminate.
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Figure 2-4  Dummy Elements Used to Create a “Closed Volume” in Coupling Surface

A friction force can also be applied tangent to the coupling surface. The friction is computed according to 
Coulomb's law of friction. The magnitude of the force during sliding equals the magnitude of the normal 
force multiplied by the friction coefficient. The direction of the friction force is opposite to the relative 
motion of the surface.

The friction force is defined as:

The friction coefficient is defined as follows:

where

Please refer to the Dytran Reference Manual on the COUPLE entry for more details on the input file definitions.

is the static friction coefficient.

is the kinetic friction coefficient.

is the exponential decay coefficient.

is the relative sliding velocity of Eulerian material and Lagrangian structure.
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For use with hydroplaning a cohesive friction model can also be applied. This is enabled by using PARAM, 
COHESION, which applies to the whole coupling surface. To apply cohesion only for parts/subsurfaces of 
the coupling surface, use can be made of the entries COUCOHF and COHFRIC. 

Arbitrary Lagrange Euler Coupling (ALE Method)
Another method to define fluid-structure interaction, is the Arbitrary Lagrange Euler (ALE) coupling, which 
allows Eulerian meshes to move. The structure and the Eulerian region are coupled by means of ALE coupling 
surfaces (Figure 2-5). The structure serves as a boundary condition for the Eulerian region at the interfaces. 
The Eulerian material exerts a pressure loading on the structure at the interface. The Eulerian region moves 
according to an ALE motion prescription in order to follow the motion of the structure. The Eulerian 
material flows through the Eulerian mesh while the mesh grid points can also have an arbitrary velocity.

Figure 2-5  ALE Motion 
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DMAT – General Material
The DMAT material entry is a general material definition and provides a high degree of flexibility in defining 
material behavior. The basis of the DMAT entry is the reference of a combination of material descriptions: 
equation of state, yield model, shear model, failure model, and spall model. Each of these functions is defined 
by its own entry and is described further in Shear Models, Yield Models, Equations of State, Material 
Viscosity and Material Failure. The only material parameter defined on the DMAT entry is the reference 
density.

The DMAT entry can be used to define all types of material behavior from materials with very simple linear 
equations of state to materials with complex yielding and shearing behavior and different failure criteria.

The required input is the reference density, the number of an EOSxxx entry defining the equation of state, 
and the number of an SHRxxx entry defining the shear properties of the material. The equation of state 
defines the bulk behavior of the material. It may be a polynomial equation, a gamma law gas equation, or an 
explosive equation. A single-term polynomial equation produces a linear elastic behavior.

Further material property definitions are optional. A referenced YLDxxx entry selects one of the following: 
a hydrodynamic response (zero yield stress), a von Mises criterion that gives a bilinear elastoplastic behavior, 
or a Johnson-Cook yield model where the yield stress is a function of plastic strain, strain rate, and 
temperature. If no YLDxxx model is referenced, the material is assumed to be fully elastic.

A FAILxxx entry can be referenced to define a failure model for the material. This failure model can be based 
on a maximum plastic strain limit, a maximum stress limit, or a user-defined failure criterion included in an 
external subroutine. If no FAILxxx entry is referenced, the material has no failure criterion. 

In addition, you may define a global (numerical) failure criterion based on the element time step using 
PARAM, FAILDT, <value>. Note that this is not a physical failure model, but can help in having the 
analysis run efficiently by automatically removing elements that are irrelevant for the calculation. This option 
must be used with care as it may influence the behavior of the analysis when you are too lenient in defining 
the time-step value at which element failure occurs. The option is available for solid and shell elements.

A PMINxxx entry can be referenced to define the spall characteristics of the material. Currently, only the 
PMINC entry is available. The entry provides a constant spall limit for the material. When no PMINxxx entry 
is referenced, the material has no spall limit for Lagrangian elements and a zero spall limit for Eulerian 
elements.

DMATEL – Elastic Material
The DMATEL entry provides a convenient way of defining the properties of isotropic elastic materials 
(Figure 3-1). The reference density is defined along with any two of the four elastic material constants: Young’s 
modulus , Poisson’s ratio , bulk modulus , and shear modulus .E v K G
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Figure 3-1  Elastic Stress-Strain Curve

The elastic constants are related by the following equations:

,

DMATEP – Elastoplastic Material
The DMATEP entry defines the properties of an isotropic, elastoplastic material with failure (Figure 3-2).

The reference density is required, together with any two of the four elastic material constants: Young’s 
modulus , Poisson’s ratio , bulk modulus , and shear modulus . When only these elastic properties 
are defined, the material behavior is linear, isotropic, and elastic. A YLDVM entry can also be referenced, in 
which case a bilinear or piecewise linear elastoplastic material model is obtained. For CQUADy and CTRIAz 
elements, a YLDJC entry can be referenced to define a Johnson-Cook yield model. A FAILxxx entry can be 
referenced to define a failure model for the material. This failure model can be based on a maximum plastic 
strain limit or a user-defined failure criterion included in an external user subroutine. When no FAILxxx 
entry is referenced, the material has no failure criterion.

Figure 3-2  Elastic-Plastic, Stress-Strain Curve

DMATOR – Orthotropic Material
The DMATOR entry defines the properties of an orthotropic elastic material. The material model can only be 
used with Lagrangian solid elements.

G E
2 1 v+( )
-------------------= K E

3 1 2v–( )
----------------------=

E v K G
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The model is for orthotropic linear elastic materials. You must define the material properties in a material 
coordinate system (a, b, c). The relationship between stress  and strain  is:

where 
 

Since , , and , the matrix is symmetrical.

You must define the following properties:

, , Young’s moduli in the principal material directions.

, , Poisson ratios between the b- and a-axis, the c- and a-axis, and the c- and b-axis.

, , Shear moduli in the ab, bc, and ca planes.

The material coordinate system is defined by specifying two vectors, V1 and V2 (Figure 3-3).

=

= the transformation matrix between the material coordinate system (a, b, c) and the basic 
coordinate system

= the local constitutive matrix defined in the material coordinate system
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Figure 3-3  Material Coordinate System

The first vector defines the direction of the a-axis. The c-axis is perpendicular to both vectors. The b-axis is 
perpendicular to the a- and c-axis. The material coordinate system is independent of the element’s shape and 
position. A FAILxxx entry can be referenced to define a failure model for the material. The failure model 
can be based on a maximum stress limit, a maximum pressure limit, or a user-defined criterion included in 
an external user subroutine.

MAT8 – Fiber-Composite Material with Failure
The orthotropic material model is used in shell elements to build a multilayered composite element. The 
material describes the elastic behavior of brittle material with failure based on the interactive stress criteria of 
failure per mode. The elastic stress-strain relation between the fiber and matrix stresses and strains is 
formulated as

evaluated at .

The shear stress-strain relation is defined as

where  is an experimentally derived value. Setting  to zero reduces the elastic behavior in relation to 
orthotropic Hooke’s Law.

For the prediction of failure, Dytran has a variety of models available. The first class of models contains the 
interactive models that predict the onset of failure, but not the failure mode. This class contains the Tsai-Hill 
and Tsai-Wu failure theories. The second class not only predicts the onset of failure, but provides the fiber 
compression (fiber buckling), matrix tension (matrix cracking), matrix compression, or in-plane shear failure. 
Theories that fall in the latter class are the Chang-Chang, maximum stress, modified Tsai-Wu, and Hashin 
failure theory.
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In addition to the closed-form theories mentioned above, Dytran has the option to combine several theories 
in a combination model to define the failure for each separate mode. If this is not sufficient, it is possible to 
supply a user model, which can accommodate up to ten user-history variables.

A summary of failure theories is given below.

Tsai-Hill

Tsai-Wu

Modified Tsai-Wu

Maximum Stress

,
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Hashin

Chang

When a failure criterion is satisfied, the next stage is to define how the remaining modes are affected by the 
failed mode. A standard model is available, which is an average of the various theories provided in the 
literature. However, the property degradation rules are not fixed and can be easily redefined by the user. The 
property degradation rules describe how stress increments are related to strain increments in the various 
directions after failure in a particular mode has occurred. 
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For example, in matrix compression failure, the material constants  (lateral Young’s modulus), and  
(Poisson’s ratio) are set to zero.

Finally, the model describes how the stresses are relaxed to zero after failure has occurred. The relaxation can 
start either when a particular mode has failed or when all material properties ( , , , ) are 
degraded to zero according to the property degradation rule. The relaxation always occurs in time, either in 
problem time units by a propagation velocity, or simply by time steps. This model is referred to as the post-
failure degradation rule.

SHEETMAT, BARLT89, and BARLT00 – Anisotropic 
Plastic Material Models
The SHEETMAT, BARLT89, and BARLT00 models are primarily intended to describe the anisotropic plastic 
behavior of thin-rolled metal sheets. They can only be used with Lagrangian shell element formulations (BLT, 
CO-TRIA and KEYHOFF) because these models are based on the plane stress formulation.

The main input parameters of these models can be categorized into three groups: elasticity, criterion of 
yielding, and rule of hardening. These input parameters (see the following table) reference keywords will be 
described in the following sections. Furthermore, strain-rate dependency is considered and finally, the use of 
the Forming Limit Diagram (FLD) is treated in view of postprocessing purposes. BARLT00 only supports 
isotropic elasticity, anisotropic yielding, and isotropic hardening.

Material Constant

Failure Mode

Fiber Tens Fiber Comp Matrix Tens Matrix Comp Shear

X X
X X X X
X X X X
X X X

E1
E2
v12
G12

E2 v12

E1 E2 v12 G12

TYPE

SHEETMAT BARLT89

ELASTICITY YIELDING HARDENING ELASTICITY YIELDING HARDENING
ISOTROPIC* ELASTIC=ISO

:

Exx

NUxy (or Gxy)

TYPEYLD=ISO: TYPEHRD=IS
O

ELASTIC=ISO
:

Exx

NUxy (or Gxy)

TYPEYLD=ISO: TYPEHRD=IS
O

00 R= 45 R= 90 1= 00 R= 45 R= 90 1=
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NORMAL 
ANISOTROPIC

ELASTIC=PLA
NISO:

Exx (or Eyy)

Ezz

Nuxy (or Gxy)

NUxz (or 
NUyz)

Gxz (or Gyz)

TYPEYLD=NORMA
NI:

TYPEHRD=N
ORMANI

not available TYPEYLD=NORMA
NI:

TYPEHRD=N
ORMANI

PLANAR 
ANISOTROPIC

not available TYPEYLD=PLANANI
:

not available not available TYPEYLD=PLANANI
:

not available

*Default

TYPE

SHEETMAT BARLT89

ELASTICITY YIELDING HARDENING ELASTICITY YIELDING HARDENING

R00 R= 45 R= 90 R00 R= 45 R= 90

R00 R45 R90≠ ≠ R00 R45 R90≠ ≠
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Elasticity
SHEETMAT includes two models of elastic behavior: fully isotropic and planar isotropic elasticity. While, 
BARLT89 and BARLT00 only support fully isotropic elastic behavior. Both forms of elasticity are most easily 
defined by giving the strain-stress relation expressed in so-called engineering constants for 
orthotropic materials:

The isotropic case is the simplest form of linear elasticity for which only the Young’s modulus 
 and Poisson’s ratio  or shear modulus  

must be defined. Planar isotropic material behavior is equivalent to transversely isotropic material behavior, 
which means that the through-the-thickness (elastic) properties may differ from the in-plane isotropic 
(elastic) properties. The values of  (or ), ,  (or ),  (or ) and  (or ) are 

required to define a planar isotropic material.

The engineering constants must be specified with respect to the rolling direction of the material which is 
defined by a local material coordinate system. This coordinate system may differ from the local element 
coordinate system and may be defined via XMAT, YMAT, and ZMAT on the SHEETMAT, BARLT89, and BARLT00 
entries (or by specifying THETA on the CQUAD4/CTRIA3 entry).

As a result of the rolling process, the plastic properties normal to the sheet are likely to be different from the 
in-plane properties which is referred as normal anisotropy. In addition, the properties may depend on the in-
plane orientation with respect to the rolling direction, which is known as planar anisotropy. SHEETMAT and 
BARLT89 material models can represent normal anisotropy in both yielding and hardening. However, planar 
anisotropy is confined to yielding. BARLT00 material model only represents planar anisotropy in yielding and 
isotropic hardening.

εxx
εyy
εzz
γxy
γyz
γxz 

 
 
 
 
 
 
 
 
 
 
 
 

1 Exx⁄ vxy Exx⁄– vxz Exx⁄– 0 0 0

vxy– Exx⁄ 1 Eyy⁄ vyz– Eyy⁄ 0 0 0

vxz– Exx⁄ vyz– Eyy⁄ 1 Ezz⁄ 0 0 0

0 0 0 1 Gxy⁄ 0 0

0 0 0 0 1 Gyz⁄ 0

0 0 0 0 0 1 Gxz⁄

σxx
σyy
σzz
σxz
σyz
σxz 

 
 
 
 
 
 
 
 
 
 
 
 

=

Exx Eyy Ezz= =( ) vxy vyz vxz= =( ) Gxy Gyz Gxz= =( )

Exx Eyy Ezz vxy Gxy vxz vyz Gxz Gyz
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Yielding Criteria
Three possibilities are provided for yielding behavior: isotropic, normal anisotropic, and planar anisotropic 
yielding. Yielding anisotropy can be defined by Lankford parameters, , , and .

 represents the width-to-thickness plastic strain ratio measured from a uniaxial test in rolling direction. 

 represents the ratio measured from a uniaxial test in transverse rolling direction.  represents the 

ratio measured from a test at 45° to the rolling direction (see Figure 3-4). 

For fully isotropic material, the in-plane and out-of-plane (i.e., normal) material properties are the same 
which means that the width plastic strain must be equal to the through-the-thickness plastic strain, implying 

. These values are the defaults on the SHEETMAT, BARLT89, and BARLT00 entries.

A material is called normal anisotropic when the material is in-plane isotropic, but has different out-of-plane 
properties compared to the in-plane properties. The R value ( ) is not equal to one. 

Consequently, only the  value is required.

The SHEETMAT , BARLT89, and BARLT00 definition material models also allow (planar) anisotropic yielding 
behavior to be modeled. This implies that the R value depends on the in-plane orientation with respect to 
the rolling direction. Therefore, you must specify all of the values for , , and , individually. 

Since BARLT00 only represents planar anisotropy in yielding, one of the following two options must be 
defined.

 Direct input of 8 BARLT00 parameters such as ALPHA1 ~ ALPHA8.
 Nominal yield stresses in 0°, 45° and 90° to rolling direction and biaxial nominal yield stress and 

, , and . Rb which is Lankford parameter in biaxial test is optional.

SHEETMAT
SHEETMAT entry defines the Krieg constitutive material model. The plasticity model of Krieg uses the standard 
Hill yield criterion, which is also known as the Hill-48 yield criterion (Krieg, 1996). The yielding 
directionality is controlled via the yield matrix  in the yield function :

where  is Cauchy stress in Voigt notation.

The coefficients of the yield matrix,  are governed by the Lankford coefficients. The non-zero coefficients 

are given as

R00 R45 R90

R00

R90 R45

00 R= 45 R= 90 1=

R00 R= 45 R= 90

R00

R00 R45 R90

R00 R45 R90

Qij φ

φ σmQmnσn σy
2–=

σn

Qij

Q11 1=
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Isotropic yielding condition, , is equivalent to von Mises yielding criterion. The effect of 

the  value on the yield surface is schematically shown in Figure 3-4.

BARLT89
BARLT89 uses Barlat-89 yield function introduced by Barlat and Lian (Barlat & Lian, 1989). Barlat-89 yield 
criterion is developed for planar anisotropy under plane stress assumption and given by

where

When , Barlat-89 yield criterion reduces to Hill-48 criterion. 

The yielding directionality is controlled via the yield parameters , , , and . There are two approaches 
to obtain them:

1. Using uniaxial, biaxial, and shear tests yield stress result: 

x, y, and z = orthotropic axes in rolling, transverse, and normal directions, respectively

, , and  = plane stress components in orthotropic axes

= uniaxial yield stress (effective stress) in the rolling direction

, , , , and = material constants

Q12 Q21

R00
R00 1+
-----------------–= =

Q22

R00
R00 1+
-----------------

1 R90+
R90

-----------------×=

Q44 Q55 Q66

R00 R90+( ) 1 2 R45×+( )
R90 1 R00+( )

--------------------------------------------------------------= = =

00 R= 45 R= 90 1=
R

φ a K1 K2+ M a K1 K2– M c 2K2
M 2σy

M–+ +=

K1

σxx hσyy+
2

--------------------------=

K2

σxx hσyy–
2

-------------------------- 
 

2
p2+ σxy

2=

σxx σyy σxy

σy

M a c h p

M 2=

a c h p
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where

2. Using R values obtained from uniaxial tension tests at 0, 45, 90 degrees inclination with respect to 
the rolling direction:

while  cannot be calculated analytically, it can be obtained numerically from solving the following equation 

for any angle  (typically ):

= Yield stress for uniaxial tension in the transverse to the rolling direction, when  and 

= Yield stress for biaxial test, when  and 

= Yield stress for shear test, when  and 

a 2 c

2
σy
τs2
-------
 
 
 M

2 1
σy

σ90
---------+

 
 
 M

–

1
σy

σ90
---------
 
 
 M

1
σy

σ90
---------+

 
 
 M

–+

-------------------------------------------------------------=–=

h σ
σ90
---------=

p
σy
τs1
------ 2

2a 2Mc+
----------------------- 
 

1
M
-----

=

σ90 σyy σ90=
σxx σxy 0= =

τs2 σyy σxx– τs2= = σxy 0=

τs1 σyy σxx 0= = σxy τs1=

a 2 c– 2 2
R0

1 R0+
---------------

R90
1 R90+
-----------------×–= =

h
R0

1 R0+
---------------

1 R90+
R90

-----------------×=

p
ϕ ϕ 45°=
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where

= width to thickness strain rate ratio in uniaxial tension in a direction making an angle  with the 
rolling direction

= uniaxial yield stress in a direction making an angle  with the rolling direction

Rϕ
2Mσy

M

∂f
∂σxx
----------- ∂f

∂σyy
-----------+ 

 σϕ

------------------------------------------- 1–=

Rϕ ϕ

σϕ ϕ
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Figure 3-4  Anisotropic Plasticity

BARLT00
BARLT00 uses the yield function which is introduced in Barlat et al (2003) and Yoon et al (2004). The yield 
function is developed for planar anisotropy under plane stress condition.

f φ′ φ″+ 2σ
a= =



Dytran Theory Manual
SHEETMAT, BARLT89, and BARLT00 – Anisotropic Plastic Material Models

29
where 

Each variable is set to

 is defined as

Each component of matrix  and  is

φ′ X′1 X+ ′
2

a=

φ″ 2X1
″ X2

″+
a

X1
″ 2X2

″+
a

+=

X1
1
2
--- Xxx Xyy Xxx Xyy–( )2 4Xxy

2++ + 
 =

X2
1
2
--- Xxx Xyy Xxx Xyy–( )2 4Xxy

2++ + 
 =

Xαβ

X′ L′σ=

X″ L″σ=

Xxx
Xyy
Xxy

L11 L12 0

L21 L22 0

0 0 L33

σxx
σyy
σxy

=

L′ L″

L′11
L′12
L′21

L′22

L′33

2 3⁄ 0 0
1– 3⁄ 0 0
0 1– 3⁄ 0
0 2 3⁄ 0
0 0 1

α1

α2

α7

=

L″11

L″12

L″21

L″22

L″33

1
9
---

2– 2 8 2– 0
1 4– 4– 4 0
0 4– 4– 1 0
2– 8 2 2– 0
0 0 1 0 9

α3

α4

α5

α6

α9

=
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The material requires 8 alpha parameters to define flow rule.

The effective stress is defined from the flow rule.

The alpha parameters can be obtained from the test results, 3 uniaxial stresses, , , and  and 

biaxial stress,  and 3 uniaxial Lankford parameters, , , and  and biaxial Lankford parameter, 

.

For biaxial case,

Using , ,  and , 4 effective stress equations can be made.

The strain rate can be defined from the flow rule and the assumption of incompressibility.

The definition of Lankford parameters is

σ σ( ) 1
2
--- 
 

1
a
---

φ′ φ″+( )
1
a
---

=

σ0 σ45 σ90

σb r0 r45 r90

rb

σxx σϕ cos 2
ϕ=

σyy σϕ sin 2
ϕ=

σxy σϕ ϕ ϕsincos=

σxx σb=

σyy σb=

σxy 0=

σ0 σ45 σ90 σb

ε·xx λ· ∂f
∂σxx
-----------=

ε·yy λ· ∂f
∂σyy
-----------=

ε·xy
λ·

2
--- ∂f

∂σxy
-----------=

ε·11 ε·22 ε·33+ + 0=
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(3-1)

Using the Equation (3-1),

Using the Euler’s theorem and flow rule,

The Equation (3-1) can be written as

From the definition, biaxial Lanford parameter is

Then additional 4 equations can be made.

Using 8 equations, the alpha parameters can be obtained.

The g matrix can be made using 4 equations from flow rule and 4 equations from r value calculation.

Under uniaxial tension in 0 degree from rolling direction, stress is .  and .

rϕ
ε·22

ε·33
--------

ε·22

ε·11 ε·22+
---------------------= =

ε·11 ε·xx
2ϕcos ε·yy

2ϕsin 2 ϕ ϕε·xysincos+ +=

ε·22 ε·xx
2sin ϕ ε·yy

2ϕcos 2 ϕ ϕε·xysincos–+=

ε·11 ε·22+ ε·xx ε·yy+=

ε·11 ε·xx
2ϕcos ε·yy

2ϕsin 2 ϕ ϕε·xysincos+ +=

λ·

σϕ
------ σϕ

2ϕ ∂f
∂σxx
----------- σϕ

2sin ϕ ∂f
∂σyy
----------- σϕ ϕ ϕ ∂f

∂σxy
-----------cossin+ +cos 

 =

λ·

σϕ
------ σxx

∂f
∂σxx
----------- σyy

∂f
∂σyy
----------- σxy

∂f
∂σxy
-----------+ + 

 =

λ·

σϕ
------2aσ

a=

rϕ
ε·22

ε·11 ε·22+
---------------------

ε·11

ε·xx ε·yy+
--------------------- 1– 2aσ

a

∂f
∂σxx
----------- ∂f

∂σyy
-----------+ 

 σϕ

------------------------------------------- 1–= = =

rb

∂f
∂σyy
-----------

∂f
∂σxx
-----------
------------

σb

=

σa σxx σ0– σyy σxy 0= =
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In 45 degrees, stress is  and in 90 degrees, stress is  

and .

Under biaxial tensional stress,  and 

Using r value, ,

Using r value in 0 degree, ,  and ,

Using r value in 45 degree,  and ,

g1 α( ) g1 α1 α2 … α8, , ,( ) f σ0
2σ

a– 0= = =

σ45 σxx σyy σxy
1
2
---σ45= = =⋅ σ90 σyy σ90=⋅

σxx σyy 0= =

g2 α( ) f σ45
2σ

a– 0= =

g2 α( ) f σ45
2σ

a– 0= =

g3 α( ) f σ90
2σ

a– 0= =

σb σxx σyy=⋅ σb= σxy 0=

g4 α( ) f σb
2σ

a– 0= =

rϕ

g4 7∼ α( )
ε·22

ε·11 ε·22+
--------------------- rϕ–

∂f
∂σxx
----------- 2sin ϕ ∂f

∂σyy
----------- 2cos ϕ ∂f

∂σxy
----------- ϕ ϕcossin+ +

∂f
∂σxx
----------- ∂f

∂σyy
-----------+

--------------------------------------------------------------------------------------------------------------- rϕ– 0= = =

r0 σxx σ0x= σyy σxy= 0=

g5 α( )

∂f
∂σyy
-----------

σ0

∂f
∂σxx
-----------

σ0

∂f
∂σyy
-----------

σ0

+
-------------------------------------------- r0– 0= =

r45 σxx σyy σxy
1
2
---σ

45
= = =
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Using r value in 90 degree, , , and ,

Using r value in biaxial test, , , and ,

From the above equations,

g6 α( )

1
2
--- ∂f

∂σxx
-----------

σ45

∂f
∂σyy
-----------

σ45

∂f
∂σxy
-----------

σ45

–+
 
 
 
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∂f
∂σyy
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σ0

+
------------------------------------------------------------------------------------ r45– 0= =

r90 σyy σ90= σxx σxy= 0=

g7 α( )
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σ90

∂f
∂σxx
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σ90

∂f
∂σyy
-----------

σ90

+
------------------------------------------------ r90– 0= =

rb σxx σyy= σby= σxy 0=

g8 α( )

∂f
∂σyy
-----------

σb

∂f
∂σxx
-----------

σb

------------------ rb– 0= =

g α( )

g1 α( )

g2 α( )

…
g8 α( )

=

Vg α( )

∂g1
∂α1
---------

∂g1
∂α2
--------- …

∂g1
∂α8
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∂g2
∂α1
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∂g2
∂α2
--------- …
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∂α8
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… … … …
∂g8
∂α1
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∂g8
∂α2
--------- …

∂g8
∂α8
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Jacobian of  is

The values can be obtained by multi-dimensional Newton-Raphson method.

However, this approach is not practical since it is not easy to calculate Jacobian matrix of g equations.

In another way, using the least square approach,

Minimizing E value can be used to get the optimal alpha values. The equation is useful when there are more 
or less test results than 8.

However, E value can have many solutions when the number of constraints is less than the number of 
unknown alpha parameters, 8. To get one solution, additional constraint (Yoon et al, 2004) is added when 

 is not set.

And E value will be evaluated using

Reference
 Barlat et al. “Plane stress yield function for aluminum alloy sheets—part 1: theory”, International 

Journal of Plasticity, 19, pp.1297-1319 (2003).
 Yoon et al, “Plane stress yield function for aluminum alloy sheets—part II: FE formulation and its 

implementation”, International Journal of Plasticity, 20, 495-522 (2004).
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Hardening Rules
The work-hardening rule defines the way the yield surface changes with plastic straining. Besides perfect 
plasticity where yield stress does not change with plastic strain, two possibilities are provided with SHEETMAT 
and BARLT89: isotropic hardening and normal anisotropic hardening and BARLT00: isotropic hardening only. 
SHEETMAT, BARLT89, and BARLT00 material models supports only Scalar hardening where the magnification of 
the size of the yield surface can change without change in shape or movement of the center of the yield 
surface.

Isotropic hardening (default) means that the yield surface changes uniformly in all directions so that the yield 
stress increases in all stress directions as plastic straining occurs.

Normal anisotropic hardening means the growth of the yield surface may require more plastic strain in 
thickness direction than in other directions. This distinct hardening in thickness direction can be controlled 
by a hardening matrix in which the coefficients are also given by the Lankford coefficients.

The uniaxial yield stress is given as a function of uniaxial [effective] plastic strain [and effective plastic strain 
rate].

where

The hardening function can be expressed as a table giving the variation of yield stress with effective plastic 
strain or by means of the following power-law function:

where:

= effective plastic strain

= effective plastic strain rate

= stress constant

= hardening parameter

= strain offset

= strain-hardening exponent

σy f ε
p

( ) g d
p

( )×=

ε
p

d
p

f ε
p

( ) a b ε
p

c+( )
n

+=

a

b

c

n
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Also, the strain-rate dependency is expressed by

where:

The power-law coefficients ( , , , and ) and rate dependency coefficients(  and ) are usually 
determined by a least squares fit of experimental true stress-strain data, obtained from uniaxial tensile tests.

For anisotropic materials the coefficients can be different for the (uniaxial) out-of-plane direction, the rolling, 
and transverse rolling direction, as well as at 45° to the rolling direction.

The representation of normal or planar anisotropy is achieved by defining a single power-law yield function. 
The different stress-plastic strain curves are recovered from the power-law yield function by means of 
multiplication by constants. 

Strain-Rate Dependence
In some metals, the rate of stretching affects the mechanical properties; the material yields at a higher effective 
stress state for higher imposed strain rates. The yield stress for a plastic process is also higher. This effect can 
be accounted for in the power-law yield function by defining the strain-rate sensitivity constant , and the 

strain-rate exponent . By default, strain-rate dependence is not taken into account.

Forming Limit Diagram
A forming limit diagram (FLD) can be input on the SHEETMAT, BARLT89, and BARLT00entries to evaluate actual 
and potential problems in sheet-metal forming processes. The diagram forms the lower bound of 
experimental strains corresponding to regions affected by necking. This implies strains below the limit curve 
are acceptable.

The forming limit diagram is composed of two polynomial functions (see Figure 3-5.). You can supply the 
coefficients representing these functions for the material under consideration.

Two different ways of postprocessing are possible. First, a contour plot of the Forming Limit Parameter (FLP) 
can be made. The FLP denotes the ratio of predicted strain and allowable strain. In equation form:

= strain-rate sensitivity constant

= strain-rate exponent

g d
p

( ) 1 k d
p

( )
m

+=

k

m

a b c n k m

k
m
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e1

FLD e2( )
----------------------=
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where  and  are respectively major and minor principal engineering strain at the integration point.

The parameter is accessible via the output variable FLP# (where # equals the integration layer number). The 
FLP contour plot shows an overall view of regions where necking (followed by failure) possibly occurs. Failure 
is indicated when FLP is greater than or equal to one.

The second method of visualization is to use the minor and major principal strains (output variables EPSMN# 
and EPSMX#) and plotting these strains for any particular element versus the experimental forming limit 
diagram. By convention, these strains are output as true strain. The forming limit diagram is usually plotted 
against engineering strains. As a result, the output variables EPSMN# and EPSMX# must be converted to 
engineering strains.

e1 e2
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Figure 3-5  Forming Limit Diagram Represented by Two Polynomials

DYMAT14 – Soil and Crushable Foam
This model is for materials exhibiting compressible plasticity; that is, their behavior is pressure dependent. It 
can be used to model aspects of the behavior of a wide range of materials that contain voids and crush or 
compact under pressure. Examples include soils, foams, concrete, metallic honeycombs, and wood.

The material model is based on that developed by Krieg and Key. It uses isotropic plasticity theory and the 
response of the material to deviatoric (shear) loading and hydrostatic (pressure) loading is completely 
uncoupled.

Deviatoric Behavior
When the YSURF option is used on the DYMAT14 entry, the yield surface in principal stress space is a surface 
of revolution centered about the hydrostatic pressure line. It is defined by , where 

where  is the pressure,  is the second invariant of the stress deviation tensor:

ΦS J2 p,( ) 0=

ΦS J2 p,( ) J2 B0 B1p B2p2+ +( )–= =

p J2
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where:  are the deviatoric stresses.  can also be defined in terms of the principal stresses 
:

The coefficients ,  and  can be related to the user-defined constants , , and . This 

relation depends on the YSTYP field on the DYMAT14 entry. If the YSTYP field is DYTRAN, then

Thus, if  and  are zero, the yield surface is cylindrical. If only  is zero, the surface is conical; 

otherwise, the surface has a shape as shown in Figure 3-6.
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Figure 3-6  Yield Surface with Hydrostat

If the YSTYP field is DYNA, then

and  is ignored.

In this case, the yield surface is cylindrical when  is zero and it has a shape as shown inFigure 3-6 when  

is nonzero.

For both options of YSTYP the yield stress  can be expressed in terms of the coefficients , , and 

. The yield stress is defined as:

, where 

Thus,
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The cut-off pressure can be supplied by the user but should not have a positive value. When the cut-off 
pressure is left blank, Dytran calculates this value as the intersection point of the yield surface with the 
hydrostat. When only  is nonzero (and therefore only  is nonzero), the cut-off pressure is calculated 

as –100 times the bulk modulus defined on the DYMAT14 entry.

The open end of the cylinder, cone, or paraboloid points into compression and is capped by a plane that is 
normal to the hydrostat. There is no strain hardening on the yield surface, so the relationship between 
deviatoric stress  and deviatoric strain  is elastic perfectly plastic as shown in Figure 3-7.

Figure 3-7  Stress-Strain Curve

In other words, in case of yielding, the yield surface remains stationary as yielding occurs. The elastic behavior 
is governed by the shear modulus .

Hydrostatic Behavior
The hydrostatic component of the loading causes volumetric yielding. This means that the cap on the open 
end of the yield surface moves along the hydrostat as volumetric yielding occurs. The relationship between 
hydrostatic pressure and volumetric strain is defined using a TABLED1 entry and can be of any shape 
(Figure 3-8).
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Figure 3-8  Volumetric Yielding

The curve can be defined in terms of the crush factor or volumetric strain. The crush factor is defined as 
 where  is the current volume and  the initial volume. It is a number between 0 and 1 where 

0 indicates no crush and 1 indicates that the material is completely crushed and has zero volume. The crush 
factor, in fact, is minus the engineering strain. The volumetric strain is defined as

The volumetric strain must always be negative.

The material unloads elastically from any point on the curve with a user-defined bulk modulus . You can 
also specify a minimum pressure (PMIN) cutoff (Figure 3-9a) or a failure pressure (PFRAC) cutoff (Figure 3-9b). 
In the first case, since pressure is positive in compression, this corresponds to a tensile cutoff for the material. 
The pressure cannot fall below the minimum value. If the initial loading is tensile, the material will behave 
elastically with a bulk modulus  until the minimum pressure is reached. Further tensile straining produces 
no increase in pressure. In the second case, you specify a failure pressure rather than a minimum pressure. If 
the pressure falls below the failure pressure, the element fails and cannot carry tensile loading for the 
remainder of the analysis. It can still carry compressive loading.
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Figure 3-9  Pressure as Function of Volumetric Strain

Under compressive loading, the material follows the strain-pressure curve (Figure 3-10).

Figure 3-10  Pressure as Function of Volumetric Strain in Compression

If the material then unloads, it does so elastically until the minimum (or failure) pressure is reached, after 
which further tensile straining does not produce any increase in pressure (Figure 3-11).



44Chapter 3: Materials
DYMAT14 – Soil and Crushable Foam
Figure 3-11  Pressure as Function of Volumetric Strain in Compression and Expansion

Determination of Yield Curve
The remainder of this section describes the experiments that can be performed to obtain the pressure-strain 
curve and values for , , and  for the YSURF option.

The most accurate way is to perform a volumetric test and a uniaxial compression test. If a volumetric test is 
not available, a uniaxial compression test can give a good approximation.

1. Volumetric test

All sides are equally compressed.

The volumetric test can be performed by exerting pressure on the foam via a fluid.

A0 A1 A2
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The volumetric change is equal to additional fluid entering the chamber.

The test results directly in a pressure-crush curve:

2. Uniaxial compression test

The stress in the 1-direction  can be measured as a function of . Note that the engineering 

stress is equivalent to the true stress since Poisson effects are typically small for crushable foams. As 
for the strains holds:

, , 

During crushing, the stresses are computed by the following equations:

Dyna Method

t11
V
V0
------

e11
V
V0
------ln= e22 0≈ e33 0≈

t11
2
3
---A0– p 2

3
---A1– 1– 

 +=

t22
1
3
---A0 p 1

3
---A1 1– 
 +=



46Chapter 3: Materials
DYMAT14 – Soil and Crushable Foam
Dytran Method

Therefore, when the volumetric test can be carried out, you obtain the  relation. From the uniaxial 

test, we find . For the DYNA option, the constants  and  can then be fitted from the 

 curve:

For the DYTRAN option, the constants , , and  must be fitted from a  curve, 

which is not a straight line.

When the volumetric test is not available, the following approximation can be made:

So that the pressure becomes:
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When  can be measured from a uniaxial test, the pressure curve is determined. The constants , , 

and  are determined such that the above equations hold.

Dyna: 

Dytran:

DYMAT24 – Piecewise Linear Plasticity
This model can be used for isotropic, elastoplastic materials where the stress-strain characteristic is too 
complex to be modeled by a bilinear representation. You can specify a table containing a piecewise linear 
approximation of the stress-strain curve (Figure 3-12) for the material.

Figure 3-12  Stress-Strain Curve

Every iteration the stress  is determined from the current equivalent strain  by interpolating from the 
stress-strain table:

where  and  are the points in the table.

The stress-strain characteristic used internally in Dytran is defined in terms of true stress and equivalent 
plastic strain. However, for convenience, the stress-strain characteristic can be input in any of the following 
ways:

 True stress/true strain.
 Engineering stress/engineering strain.

t11 A0 A1

A2

A0 0.0=

A1 3.0=

A0 0.0=

A1 0.0=

A2 3.0=

σ ε

σ σi σi 1––( ) ε εi 1––( ) εi εi 1––( )⁄[ ] σi 1–+=

σi εi



Dytran Theory Manual
DYMAT25 - Cap Material Model

49
 True stress/plastic strain.
 Plastic modulus/plastic strain.

Alternatively, you can specify the hardening modulus and yield stress, in which case a bilinear representation 
is used:

where  is the equivalent plastic strain. Hardening is assumed to be isotropic; the yield surface expands as 
the material yields.

This material can be used with all solid, shell (except for membranes), and Hughes-Liu beam elements. 
Strain-rate sensitivity and failure can be included for all of these elements. Strain-rate sensitivity can be 
defined in two ways:

1. You can specify a table giving the variation of a scale factor S with strain-rate . The scale factor is 
multiplied by the stress found from the stress-strain characteristic to give the actual stress. The failure 
criterion is based on plastic strain. When the plastic strain exceeds the specified value, the element 
fails. All stresses are set to zero, and the element can carry no load.

2. You can specify the constants D and P in Cowper-Symonds rate enhancement formula:

where  is the dynamic stress,  is the static yield stress, and  is the equivalent strain rate.

DYMAT25 - Cap Material Model
The cap material model can be used for geomechanical problems with materials like soil, concrete and rock. 
This section gives a brief description of the model and references to literature where more details on the 
material model can be found.

The cap model is characterized by the following constitutive equations:

, and 

where , , and  are the total, elastic and plastic strain tensor,  the elasticity matrix and  the stress 
tensor. The flow rule is given by:

where the sum is over the active yield surfaces , i.e., the failure envelope , the hardening cap 

surface , and the fixed tension cutoff surface . The yield conditions are defined by:
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, , 

The hardening parameter  for the cap model is related to the plastic volume change by a hardening law.

The cap model is a plasticity model described by a yield surface that is defined by means of a failure envelope, 
a hardening cap and a tension cut off. Figure 3-13 shows the typical yield surfaces in a cap model.

The failure envelope surface is denoted by

and the cap by

 for 

where  is the first invariant (trace) of the stress tensor,  is the second invariant of the stress deviator, 

 is an internal state variable that measures hardening as a functional of the history of plastic volumetric 

strain and ,  define the  range of the cap. Note that  is chosen as negative in tension.
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κ
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Figure 3-13  Typical Yield Surfaces in a Cap Model

The functions  and  are given by (see Appendix A. References 1. and 2.):

.

The von Mises type transition failure surface is defined by the following:

The intersection of the cap with the (hydrostatic)  axis is given by:

and  is defined by:

The hardening parameter  is related to the actual plastic volume change:

The tension cut off surface is given by the function:

where  is the maximum hydrostatic tension sustainable by the material.
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Kinematic work hardening for the failure envelope surface is based on the approach of Isenberg et. Al. [1978]. 
It is switched on by specifying . The failure envelope surface is replaced by a family of envelope surfaces 
that are bounded by an initial yield surface and by a limiting failure envelope surface. Which member of the 
family is taken, is implemented by replacing in all yield relations the stress tensor  by  where  is a 

deviatoric tensor that accumulates in time. This tensor  is called the “back stress tensor” and is defined by

Here  is the deviatoric plastic strain tensor,  denotes the size of the yield surface and represents the radial 
distance between the outside of the initial yield surface and the inside of the limit surface. After each 
increment of , it is checked whether its second invariant exceeds . In that case,  is scaled by a scalar such 

that its second invariant equals . For consistency between the limit surface of the kinematic hardening cap 

model and the failure envelope of the standard cap model, the parameter  is placed by .

DYMAT26 – Crushable Orthotropic Material
The DYMAT26 entry defines the properties of an orthotropic, crushable material model. It can only be used 
with Lagrangian solid elements.

The input required for the material consists of two parts: data for the fully compacted state and data for the 
crushing behavior. For the fully compacted material, the input consists of the density, the elastic modulus for 
the fully compacted material, Poisson’s ratio for the fully compacted material, the yield stress for the fully 
compacted material, and the relative volume at which the material is fully compacted.

The behavior during crushing is orthotropic and is characterized by uncoupled strain behavior when the 
initial Poisson’s ratios are not supplied. During crushing, the elastic moduli (and the Poisson’s ratios only if 
they are supplied) vary from their initial values to the fully compacted values. This variation is linear with 
relative volume.

When the material is fully compacted, the behavior is elastic perfectly plastic with isotropic plasticity.

The load tables define the magnitude of the average stress in a given direction as the material’s relative volume 
changes. At defining the curves, care should be taken that the extrapolated values do not lead to negative yield 
stresses.

RUBBER1 – Mooney-Rivlin Rubber Model
The RUBBER1 entry defines the properties of a Mooney-Rivlin rubber model. It can only be used with 
Lagrangian solid elements.

The constitutive behavior of this material is defined as a total stress-total strain relationship. Rather than by 
Hooke’s law, the nonlinear elastic material response is formulated by a strain energy density function 
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accounting for large strain components. The strain energy density function is defined according to the 
Mooney-Rivlin model:

The constants  and , and Poisson’s ratio  are the input parameters for the model. The constants  and 

 are related to the input parameters as:

, , and  are strain invariants in terms of stretches. Stretches are defined as:

where  and  are, respectively, the coordinates of the deformed and the original geometry.

For rubber-like materials, the shear modulus  is much less than the bulk modulus . In this case, 

.

The stresses are computed as:

where  is the second Piola-Kirchhoff stress tensor:

The Cauchy-Green stretch tensor  is defined as:

where  is the deformation gradient tensor
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In terms of principal stretches  (for example, the stretches in the coordinate system where all shear 

strains and shear stresses vanish) the expressions for the deformation gradient tensor , and the Cauchy-

Green stretch tensor  simplify to

, 

The strain invariants , , and  read

The stresses can be written as

where 

Determination of Rubber Material Parameters
The remainder of this section describes the experiments that can be performed to obtain the material 
parameters as they appear in the strain-energy density function. The most commonly performed tests are 
uniaxial, planar (shear), and volumetric tests.

A planar or shear test can be used to determine the shear modulus . Tensile or compression 
tests provide the same information. Since rubber is a nearly incompressible material, the volume is assumed 
to be constant. Therefore, the principal stretches , , and  can be written as

, , 
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The stresses in the 1- and 3-direction are given by

The corresponding forces per unit cross-sectional area then become

where  and  are the original areas.  and  are given as

, 

Fitting the measured force versus stretch curve with curve from the model, , the shear 

modulus can be estimated.

The experiment is usually performed with a thin, short, and wide rectangular strip of material fixed at its wide 
edges to rigid loading clamps that are moved apart (Figure 3-14).
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Figure 3-14  Force Versus Stretch Diagram

The above test does not show how the constants  and  can be determined. For this purpose, a uniaxial 
test (elongation or compression) is recommended. No sides are clamped and one side (the 1-direction, see 
figure below) is either elongated or compressed. Since the material is nearly incompressible, the principal 
stretches are then given by

, 

The stress per unit deformed cross-sectional area in uniaxial direction is given by
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The corresponding force applied to a unit original cross-sectional area  then becomes

where  is the original area at time zero, and  is given as

Furthermore, since

, 

it follows that  is an increasing convex function due to the only relevant physical conditions

The analytical function is schematically shown in Figure 3-15.

Figure 3-15  Force Versus Stretch Diagram

Linear fitting can easily be achieved by applying the transformation
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For the Mooney-Rivlin approach, the force  then becomes

which is a straight line with slope  and the intersection point with  axis equal to . 

It must be noted, however, that the transformation can only be applied to the measured force for intervals of 
, where the measured force is an increasing convex function of the principal stretch . A reasonable 

estimation interval for compression , and for tension  is indicated in Figure 3-16.

Figure 3-16  Force Versus Stretch Diagram

The final test to be discussed is a volumetric compression test. It can be used to determine the bulk modulus 
. The test can be performed in two ways.

1. Two sides clamped (the 2- and 3-directions), one side compressed (the 1-direction):
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Since the area  does not change shape, the force applied to a unit cross-sectional area is equal to 

the stress

The constant  was defined as

and

the force can be written as

The material is assumed to be nearly incompressible; therefore,  with . Applying 

this assumption to the above equation and neglecting higher-order terms yields

As a result, the slope of the measured force curve around  gives an estimate for . 

When  is known, using the expression for Poisson’s ratio  results in a value for the input 

parameter .

2. All sides equally compressed:
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For this test, the pressure  can be measured. An analytical expression for the pressure according to 
the Mooney-Rivlin approach is

Again, substitution of  and neglecting higher-order terms of yields

Therefore, the slope of the pressure curve at  determines the bulk modulus  and Poisson’s 

ratio .

RUBBER2 – Ogden Rubber Model
The RUBBER2 entry defines the properties of an Ogden rubber model. It can only be used with Lagrangian 
solid elements.

The constitutive behavior of this material is defined as a total stress-total strain relationship. Rather than by 
Hooke's law, the nonlinear elastic material response is formulated by a strain energy density function 
accounting for large strain components. The strain energy density function is defined according to the Ogden 
model:

where  and , are the material constants,  and . 

For rubber-like materials, the shear modulus is much less than the bulk modulus. The shear modulus,

And the bulk modulus, 

where,  is the Poisson's ratio which is close to 0.5.

Stretches (deformation gradient tensor) are defined as:

P

P 1
3
--- τ11 τ22 τ33+ +( )– 2A 1

λv
15

-------- 1
λv
-----–

 
 
 

4B 1

λv
15

-------- λv–
 
 
 

4Dλv
3 λv

6 1–( )–+= =

λv 1 ε–= ε

P 2 14A 32B 12D+ +( )ε 3Kε= =

λv 1= K

v

W
μj
αj
-----

j 1–
 λi

αj 1–( ) 1
2
---K J 1–( )2+

i 1=
=

μj αj λ λ J3(⁄= J λ1λ2λ3=

G 1
2
--- μjαj

j 1=

n

=

K 2G 1 ν+( )
3 1 2ν–( )
------------------------=

ν

∂xi
∂Xi
-------- Fij=



Dytran Theory Manual
FOAM1 – Foam Material (Polypropylene)

61
where  and  are, respectively, the coordinates of the deformed and the original geometry.

The right Cauchy-Green tensor are computed as:

The principal Kirchoff stress components are given by:

(this is not sum)

where  is the principal stretch.

The standard basis is extracted using standard formula:

where  is the component of the orthogonal tensor containing the eigenvectors of the principal basis.

The Cauchy stress tensor is calculated using:

FOAM1 – Foam Material (Polypropylene)
This model is used for an isotropic, crushable material model where Poisson’s ratio is effectively zero.

The yield behavior is assumed to be completely determined by one stress-strain curve. In effect, this means 
that a uniaxial compression or tension test, a shear test, or a volumetric compression test all yield the same 

curves when stress (or pressure) is plotted versus strain (or relative volume ). The yield surface in three-

dimensional space is a sphere in principal stresses

where the radius of the sphere  depends on the strains as follows

with

and  is the function supplied in the stress-strain table.

xi Xj

Cij FkiFkj=

τii
E λi

W
∂λi
--------=

λi

τij qikqjlτkl
E=

qij

σij J 1– τij=

V
V0
------

τ11
2 τ22

2 τ33
2+ + Rs

2=

Rs

Rs f Re( )=

ε11
2 ε22

2 ε33
2+ + Re

2=

f



62Chapter 3: Materials
FOAM2 – Foam Material with Hysteresis
FOAM2 – Foam Material with Hysteresis
This model is used for an isotropic, crushable material model where Poisson’s ratio is effectively zero and the 
unloading curve is a user-specified nonlinear hysteresis response stress-strain curve. The yield stress can also 
be made strain rate dependent.

The yield behavior is assumed to be completely determined by one stress-strain curve and a scale factor 
depending on the strain rate. In effect, this means that a uniaxial compression or tension test, a shear test, or 
a volumetric compression test all yield the same curves when stress (or pressure) is plotted versus strain (or 

relative volume ). The yield surface in three-dimensional space is a sphere in principal stresses

where the radius of the sphere  depends on the strains and strain rates as follows

with

and

and  is the function supplied in the stress-strain table and  (if defined) is the function supplied in the 

factor-strain rate table.

The unloading curve is a nonlinear hysteresis response curve which is constructed such that the ratio of the 
dissipated energy (area between compressive loading and unloading curve) to total energy (area under the 
loading curve) is equal to the energy dissipation factor alpha.

In the case of linear unloading, Dytran automatically constructs a piecewise linear unloading curve, whose 
segments are parallel to the corresponding segments of the loading curve, except for the first and last segment 
which pass through the origin and point P (the point on the compression curve where the unloading starts), 
respectively. In the case of quadratic and exponential unloading, the curves are respectively constructed from 

a parabolic function  and an exponential function . The coefficients are 

computed such that the unloading curve starts in point P, and the area between the loading and unloading 
curves satisfies the energy dissipation condition.

When the unloading reaches the origin, further unloading follows a straight line with a slope equal to the 
Young’s modulus until the tensile stress is reached. Either a minimum or a failure cut-off stress can be 
specified. In the first case the stress cannot fall below the minimum value, in the second case the stress is set 
to zero when the minimum is reached.
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Figure 3-17  FOAM2 Unloading Curves

Mechanical Properties of Snow (Multisurface Plasticity)
Snow is a very specific material between water and ice. In micro term, the structure of snow looks like a 
general porous material where the degree of compaction can vary largely. Therefore, from the constitutive 
equation point of view, snow belongs to the family of soils. One of the plasticity models that applies to snow 
is a multisurface one.

The multisurface plasticity model for snow, see [Ref. 3.] and [Ref. 4.] (warning: there are misprinting in the 
papers) is characterized by two independent hardening (softening) mechanisms and a set of yield functions as 
shown in the following form:

 and  are the first and second invariant of the stress tensor and . The material parameter 

 is related to the cohesion of snow.  is the hardening (softening) parameter associated with the yield 

surface .  determines the shape of . Hence, it is a model parameter that may be set independently 

from the specific type of snow.  is a material parameter related to the angle of friction. Figure 3-18 contains 

a plot of the yield functions  and  in the meridian plane at different stages of the hardening process of 

 and the softening process of , respectively.
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Figure 3-18  Snow Model: Plots of Loading Functions in the Meridian Plane

 defines a so-called “tension-cut-off ”-plane perpendicular to the hydrostatic axis. For simplicity, a linear 

softening law is adopted:

 where  is the hydrostatic tensile strength of snow,  is the softening modulus and  represents the 

accumulated plastic volumetric tensile strain.

For the implementation in Dytran, the accumulated plastic strain is updated if the tensile-pressure is bigger 
than the current . The incremental strain is calculated using the difference of the pressure divided by the 

bulk modulus. Then the new  is updated to be used in the next cycle. Furthermore, the deviatoric stresses 

are brought to zero.

 constitutes a smooth yield function closed along the compressive and the tensile branch of the hydrostatic 

axis. Its shape in the stress space changes continuously in the course of hardening, see Figure 3-18. A specific 
hardening law, similar to the one used in the Cap Model [Ref. 6.] was adopted for snow on the basis of results 
from hydrostatic compression tests:

 if 

 if 
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  and  are parameters determined from hydrostatic compression tests.  is a parameter that avoids 

singularity in above equations at . It is set to 0.99. As  grows, the model obtains a shape similar 

to the Drucker-Prager failure criterion; see Figure 3-18. The following relation obtains the correlation between 
the proposed model for snow and the Drucker-Prager model.

The plasticity evolution is done using an additive plasticity model and associative flow rule (with isotropic 
hardening law) as follows:

ac bc fc
αc bc= αc

κc αDP=

ε εe εp+=

σ C : ε εp–( )=

ε· λ·
∂fc
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-------=
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 The incremental plastic strains can be derived as follows:

They consist of deviatoric and volumetric plastic strains as follows:

 is calculated according to the following procedure. First the trial stresses are updated using 
elastic assumption.

From the above formulation we can derive the following relation.

Using the Newton iteration scheme as follows:
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The following relation is obtained.

Therefore,  can be calculated as follows:

In this way the volumetric equivalent plastic strain can be updated with the consequence that the yield surface 
is growing. Therefore a few iterations are needed to bring the trial stresses, , back to the updated yield 

surface with a chosen accuracy.

Using this model an excellent agreement between simulation and the experiment results has been achieved as 
mentioned in [Ref. 3.] and [Ref. 6.]

fc σE( ) S

J2

cc
qc
----- I1 qc+( )4+2

----------------------------------------------

 
 
 
 
 
 

 : Δλ σn 1+ σE–( )+ 0=

Δλ

Δλ
fc σE( )

G
J2D

J2

cc
qc
----- I1 qc+( )

4+

---------------------------------------------
--------------------------------------------------=

fc σE( )

9K κc

4
cc
qc
----- I1 qc+( )

3

J2

cc
qc
----- I1 qc+( )

4+2

----------------------------------------------–

 
 
 
 
 
  2

G
J2D

J2

cc
qc
----- I1 qc+( )4+

-----------------------------------------+

-------------------------------------------------------------------------------------------------------------------------------=

σn 1+



Chapter 4: Models 
MSC Nastran Implicit Nonlinear (SOL 600) User’s GuideDytran Theory Manual

4 Models

 Shear Models     69

 Yield Models     78

 Equations of State     89

 Material Viscosity     102

 Material Failure     102

 Spallation Models     105

 Artificial Viscosities     106

 Dynamic Relaxation     111

 User-defined Porosity Models     115

 Hybrid Inflator Model     118

 Air Bag Fabric     121

 Determination of Fabric Material Parameters     124

 Seat Belts     129



Dytran Theory Manual
Shear Models

69
Shear Models
The shear model is referenced from a DMAT entry. It defines the shear behavior of the material. At present, an 
elastic shear model is available with a constant or polynomial shear modulus. For Lagrangian solids, a linear 
viscoelastic shear model is also available.

SHREL – Constant Modulus Shear Model
The SHREL entry defines a shear model with a constant shear modulus  (Figure 4-1). The model is referenced 
from a DMAT entry that defines the general material properties.

Figure 4-1  Elastic Shear as Function of Strain.

G
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SHRLVE – Linear Viscoelastic Shear Model
The deviatoric stress components are given by

(4-1)

where .

The variables in the above equations are as follows: 

To understand the behavior of this material, it is instructive to look at a mechanical spring-damper 
model (Figure 4-2) with a force/deflection behavior that is identical to the linear viscoelastic 
stress-strain behavior.

= deviatoric stress component

= deviatoric strain component

= shear relaxation modulus

= long term shear modulus

= short term shear modulus

= shear viscosity constant

= decay coefficient
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Figure 4-2  Generalized Maxwell Model

The mechanical model is a Maxwell element in parallel with a single spring and a single damper. The stress-
strain relation for this mechanical model is derived first. The strain  is equal for all elementary parts in 
the generalized Maxwell model. 

ε t( )
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The stress in each of the elementary bodies is given by

(4-2)

(4-2)c is easily derived by noting that for a Maxwell element the strain rate is the sum of the strain rates of the 
spring and the damper

(4-3)

Since the stresses in the spring and the damper are equal, (4-2)c can be found by reordering (4-3)

Maxwell element: (4-4)

where 

Since the elementary parts are linked in parallel, the stress in the generalized Maxwell model can be found by 
adding the stresses as given by Equations  (4-2), (4-2)b, and (4-2)c

(4-5)

(4-5) is completely analogous to (4-1).

Based on (4-2), two types of behavior can immediately be distinguished

I = Solid behavior: 

II = Liquid behavior: 

Fluid behavior occurs when the additional spring  is removed from the generalized Maxwell model.
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By means of some examples, the material response is demonstrated. The examples show the stress response 
to enforced strain.

Example 1: Constant Strain Rate

, (4-6)ε t( )d
td

------------ ε·0= ε t( ) ε·0t=
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Substituting (4-6) into (4-5) and solving for the integral gives

(4-7)

and

(4-8)

The above relations are sketched in Figure 4-3.

Due to the additional dashpot , an instantaneous response occurs for both the solid and the fluid.

The stress in the solid rises more strongly towards a constant stress rate. The fluid reaches a maximum value 
for its stress.
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Figure 4-3  Response of Solid and Fluid to Constant Strain (Example 1)
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Example 2:  

Constant strain rate for .

Zero strain rate for .

This example demonstrates the stress relaxation behavior of a linear viscoelastic material. It shows that 
although the strain is not increasing, the stress relaxes until it reaches a constant value. For a fluid, the stress 
relaxes completely to zero.

(4-9)

Substituting (4-9) into (4-5) and solving the integral gives

 and  as given by Equations (4-7) and (4-8)

(4-10)

(4-11)

The response is sketched in Figure 4-4. Until , the response is equal to that shown in Figure 4-3.

The instantaneous relaxation at  is again due to the additional dashpot .

A solid relaxes to a finite value, equal to the stress in the  spring of the generalized Maxwell model. A 

fluid relaxes completely to zero.
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Figure 4-4  Stress Relaxation of Linear Viscoelastic Material After a Period of Constant Strain Rate (Example 2).
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SHRPOL – Polynomial Shear Model
The SHRPOL model defines a polynomial shear model where the shear modulus is related to the effective 
plastic shear strain by a cubic equation.

where  = effective plastic shear strain and , , , and  are constants.

Yield Models
Yield models may be referenced by DMAT, DMATEP, or DYMAT24 entries. The yield models can be used to model 
elastic perfectly plastic behavior, bilinear elastoplastic behavior, piecewise linear behavior, or hydrodynamic 
behavior (zero yield stress).

YLDHY – Hydrodynamic Yield Model
The YLDHY entry defines a yield model with constant zero yield stress. This model should be used for fluids 
that have no shear strength and are, therefore, hydrodynamic.

YLDMC – Mohr-Coulomb Yield Model
The YLDMC entry defines a Mohr-Coulomb yield model. The yield stresses are defined by giving bilinear 
curve as shown in the Figure 4-5.

Figure 4-5  Relationship of stress under yield envelope

G G0 G1γ G2γ2 G3γ3+ + +=

γ G0 G1 G2 G3
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The stresses can be calculated by the geometry shown in Figure 4-5.

where

The principal stress relationship can be described as equations below.

where

= cohesion

= normal stress on yield plane

= shear stress on yield plane

= internal friction angle

= current pressure on element

= maximum principal stress

= minimum principal stress
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The yield plane is given in the Figure 4-6 when maximum principal stresses and minimum principal stresses.

Figure 4-6  2D-yield plane when principal stresses are applied

YLDVM – von Mises Yield Model
The YLDVM entry defines a von Mises yield model. The yield stress and hardening modulus are defined by 
giving either a bilinear or piecewise linear stress-strain curve. With Lagrangian and Eulerian solid elements, 
only an elastic perfectly plastic yield model can be used. The hardening modulus is not used.

Bilinear Representation

where the yield stress is given by

where 

σy

σy σ0
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----------------εp+=
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Piecewise Linear Representation

During every iteration, the stress s is determined from the current equivalent strain  by interpolating from 
the stress-strain table

where  and  are the points in the table. The stress-strain characteristic used internally in Dytran is in 

terms of true stress and equivalent plastic strain. However, for convenience, the stress-strain characteristic can 
be input in any of the following ways:

 True stress/true strain.
 Engineering stress/engineering strain.
 True stress/plastic strain.
 True stress/plastic modulus.

True stress is defined as

where  = current force,  = current area.

Plastic strain  is

= yield stress

= Young’s modulus

= hardening modulus

= equivalent plastic strain

σ0

E

Eh

εp

ε

σ σi σi 1––( ) ε εi 1––( ) εi εi 1––( )⁄[ ] σi 1–+=

σi εi

σtrue
F
A
---=

F A

εpl

εpl εtrue εel–=



82Chapter 4: Models
Yield Models
where  = true strain,  = elastic strain.

True strain is defined as

where  = incremental change in length,  = current length.

εtrue εel

εtrue
ld
l

----=

dl l
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By comparison, engineering stress  and strain  are given by where  = original 

area and

 where  = original length.

True stress/true strain and engineering strain are related by the following formulas:

At small strains, there is little difference between true stress-strain and engineering stress-strain. However, at 
moderate and large strains there can be very large differences, and it is important that the correct stress-strain 
characteristic is input.

When defining the material properties using Young’s modulus, yield stress, and hardening modulus, the 
hardening modulus must be estimated from a plot of true stress versus true strain. This estimate may well 
require a measured material characteristic to be replotted.

Some simple examples follow:

True Stress Versus True Strain
The slope of the first segment of the curve gives the Young’s modulus for the material (when it is not defined 
explicitly) and the first nonzero stress point gives the yield stress  (Figure 4-7). The point corresponding to 

the origin can be omitted.

Figure 4-7  True Stress Versus True Strain Curve
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Engineering Stress Versus Engineering Strain

Figure 4-8  Engineering Stress Versus Engineering Strain Curve

True Stress Versus Plastic Strain
Since the curve is defined in terms of the equivalent plastic strain, there is no elastic part in the curve 
(Figure 4-9). The first point must be the yield stress of the material at zero plastic strain. Young’s modulus is 
defined separately.
F

Figure 4-9  True Stress Versus Plastic Strain Curve

True Stress Versus Plastic Modulus
This option is slightly different since the curve is specified as a series of pairs of stress and hardening moduli, 
rather than as a series of pairs of stress and strain. Young’s modulus and yield stress are defined explicitly so 
that the table consists of pairs of values with the hardening modulus (x-axis) and the true stress (y-axis) at the 
end of the segment (Figure 4-10).
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Figure 4-10  True Stress Versus Plastic Modulus Curve

Yielding occurs when the von Mises stress

exceeds the yield stress . The principal stresses are , , and .

Isotropic hardening is assumed, which means that the yield surface increases in diameter as yielding occurs, 
but its center does not move.

This yield model can be used with beam, shell, and solid elements. When used with shell or solid elements, 
strain-rate sensitivity and failure can be included. Strain-rate sensitivity can be defined in two ways:

1. You can specify a table giving the variation of a scale factor  with strain-rate . The scale 
factor is multiplied by the stress found from the stress-strain characteristic to give the actual stress. 
The failure criterion is based on plastic strain. When the plastic strain exceeds the specified value, the 
element fails. All the stresses are set to zero, and the element can carry no load. (This failure criterion 
is referred to from the DMATEP or the DYMAT24 entry.)

2. You can specify the constants  and  in Cowper-Symonds rate enhancement 

formula

where  is the dynamic yield stress,  is the static yield stress, and is  the equivalent strain rate.
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YLDJC – Johnson-Cook Yield Model
The YLDJC entry defines a Johnson-Cook yield model in which the yield stress is a function of the plastic 
strain, strain rate, and temperature

where 

YLDTM – Tanimura-Mimura Yield Model
The YLDTM entry defines a Tanimura-Mimura yield model in which the yield stress is a function of the 
plastic strain, strain rate, and temperature

where

=

= effective plastic strain

= effective strain rate

= reference strain rate

= temperature

= room temperature

= melt temperature

, , , , and  are constants.
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This yield model is suitable for a wide range of strain rates, strains and temperatures.

YLDZA – Zerilli-Armstrong Yield Model
The YLDZA entry defines a Zerilli-Armstrong yield model in which the yield stress is a function of the plastic 
strain, strain rate, and temperature

 for Fcc metals

 for Bcc metals

=

= temperature

= room temperature

= melt temperature

= effective plastic strain

= effective strain rate

= quasi-static strain rate

= reference strain rate

= critical yield stress

, , , , , , and  are constants.
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where 

This yield model can be used for both Fcc type of metals, like iron and steels, as well as Bcc type of metals, 
like aluminum and alloys.

YLDRPL – Rate Power Law Yield Model
The YLDRPL entry defines a rate power law yield model in which the yield stress is a function of the plastic 
strain and strain rate.

where 

YLDPOL – Polynomial Yield Model
The YLDPOL entry defines a polynomial yield model in which the yield stress is a function of the 
plastic strain

where

 = effective plastic strain

= effective plastic strain

= effective strain rate

= reference strain rate

= temperature

, , , , , and  are constants.

= effective plastic strain

= effective strain rate

, , , , and  are constants.
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 = maximum yield stress

, , , , , and  are constants.

YLDSG – Steinberg-Guinan Yield Model
The YLDSG entry defines a Steinberg-Guinan yield model in which the yield stress is a function of the plastic 
strain, strain rate, and temperature:

where 

Equations of State
Equations of state are referenced from the DMAT entry. The equation of state for a material is of the basic form

Pressure =  (density, specific internal energy)

The simplest equation of state is the gamma law equation of state, defined by the EOSGAM entry. The only 
input required is the ratio of specific heats for an ideal gas.

The EOSIG entry defines the properties of the Ignition and Growth equation of state and the reaction rate 
equation used to model high explosives.

= effective plastic strain

= temperature

= room temperature

= melt temperature

= pressure

= density

 and  are constants.

σmax

A B C D E F

AT A1 1 A3εp+( )
A4=

σy min A2 AT,( ) 1 H T Tr–( )– Bp ρ
pref
--------- 
  1 3/

+ T Tm<,=

σy 0 T Tm≥,=

εp

T

Tr

Tm

p

ρ

A1 … A4 H, , , B

f



90Chapter 4: Models
Equations of State
The EOSJWL entry defines an equation of state based on the JWL explosive model. It is used to calculate the 
pressure of the detonation products of high explosives. The JWL model is empirically based and requires the 
input of five constants.

The EOSDEF entry defines the properties of the deflagration equation of state and the reaction rate to model 
the burning of solid propellants.

The EOSNA entry defines an equation of state based on the Noble-Abel gas law. This is an adjustment of the 
ideal gas law that takes into account the volume of gas molecules.

The EOSPOL entry defines a polynomial equation of state.

The EOSTAIT entry defines an equation of state based on the Tait model in combination with a 
cavitation model.

EOSDEF-Deflagration
The pressure in the reaction products (in “gas” state) is defined by the Noble-Abel equation of state 
as follows:

 for reacted product.

 where , b are constants and R is the gas constant. 

The ability of the material to quickly produce gases when burnt is characterized by the burn rate coefficient 
and by the ratio of initial surface area divided by initial volume. This ratio is denoted by SAVR, and their 
product is called the vivacity. Propellants burn faster and have larger vivacity as their fragmentation degree 
increases.

The chemical reaction rate for conversion of un-reacted explosive to reaction products is described by the 
following reaction rate equations:

 = wSAVR  vivacity

form function

time derivative of burn fraction

Where:

w = burning rate coefficient

p γ 1–( ) ρ
1 bρ–
--------------e=

T γ 1–( )e
R

------------------= γ

ξ

φ 1 F–( )X YF+=

dF
dt
------- ξφpβ=
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As the solid propellant burns at its exposed burning surface, the burning surface moves inward in the 
direction perpendicular to itself. This movement of the burning surface in parallel layers is known as Robert’s 
law.

Since the mechanism of the burning involves several chemical reactions it is difficult to predict the burning 
rate from the chemical and physical properties of the propellants. Instead an empirical law is available that 
shows good agreement with experiment. This law is called the Saint-Robert law and also Vieille’s law. This 

law states that the linear burning rate of any propellant can be expressed by the simple expression:

Here  is the burning rate coefficient and  the burning rate exponent. Here  ranges from 0.2 to 0.8.

Vivacity , where w is the burning rate coefficient and usually comes from burn rate vs pressure 
tests from closed bomb, cinephotomicroscopy or combination thereof, (for details refer to Appendix A, 
Reference 35.). The initial surface area to volume ratio SAVR can be calculated based on the grain geometry, 
(for details refer to Appendix A, Reference 36.). Examples of the common propellant geometries are shown 
in the figure below, which each provide unique SAVR value. 

Figure 4-11  Common propellant geometries 

Form function  is the ratio of the current surface area over the initial surface area during the burning 

of the propellant (for details refer to Appendix A, Reference 37.). It provides the propellant grain geometry 
to influence the burning rate over the burn fraction. 

 = burning rate exponent

SAVR = initial surface area divided by volume

Y= parameter form function

S= parameter form function

β

γ wpβ=

γ β β

ξ wSAVR=

φ S
S0
-----=
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To simplify the input as current grain surface area is unknown during analysis, a two parameter input is used 
to approximate typical grain geometry surface burning profiles. Using x and s input to 

 different form functions can be approximated as shown below. Typically spherical 
ball and cylindrical pellet grains are regressive while single perforated cylindrical grains are neutral and multi-
perforated cylindrical grains are progressive. Adding material variability and thin region material loss in 
burning can be approximated with combinations of parameters.

Figure 4-12  Different combination of parameters

Chemical Energy E can also be calculated by the Adiabatic Flame Temperature (K) Tf multiplied by the gas 
constant R (J/kg.K) as it is solved as adiabatic combustion. This also shows that the chemical energy is a 
specific energy value (J/kg).

Initialization of deflagration is achieved by setting region of ignition with SIE at the Chemical Energy value.

EOSGAM – Gamma Law Equation of State
The EOSGAM model defines a gamma law equation of state for gases where the pressure is a function of the 
density, the specific internal energy, and the ideal gas ratio of specific heats  of an ideal gas

where 

The EOSGAM equation of state can also be used to model viscous gases.

= specific internal energy unit mass

= overall material density

= ratio of specific heats 

φ 1 F–( )X SF+[ ]=

γ

p γ 1–( )ρe=

e

ρ
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EOSIG - Ignition and Growth Explosive Material Model
The IG model governs the simulation of the reaction zone of explosive material where the transition from the 
fully un-reacted to the fully reacted state occurs. Prior to the start of the reaction, its “un-reacted” EOS 
(described by (4-12)) models the explosive. After the reaction has completed, the explosive is modeled by the 
JWL equation of state for the detonation product (described by (4-13)). The reaction rate relation controls the 
fraction of explosive reacting per cycle during the transition from the un-reacted to the reacted state. 

IG Model
The Jones-Wilkins-Lee equation of state is used in the ignition and growth calculations for both the un-
reacted and the reaction products. The JWL equation of state defines the pressure in the un-reacted explosives 
as:

(4-12)

where: 

Similarly, a JWL form defines the pressure in the reaction products as follows:

(4-13)

Xi X t( )=

Note:  
 where  denotes time.Xi 1+ X t Δt+( )= t

 
=

The relative density of the unreacted explosive.

= The specific internal energy per unit mass of unreacted explosive.

= The initial density of the explosive.

, , , , = The input constants of the unreacted explosive.
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where 
 

Figure 4-13  A Mixture Zone in the IG Explosive Element

The mixture of un-reacted explosive and reaction products is defined by the reacted fraction F, where:

F = 0 → no reaction

F = 1 → complete conversion from explosion to products

For equilibrium of the mixture equation of states as described above is defined as pressure equilibrium. The 
pressure in the mixture elements is assumed to be in equilibrium, thus:

(4-14)

The mass of the un-reacted and reacted material change during the conversion of explosive as follows:

(4-15)

= The relative density of the reaction product. 

= The specified internal energy per unit mass of the reacted product. 

, , , , = The input constants of the reaction product.
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(4-16)

where  denotes the element's mass, and  denotes the chemical reaction rate for conversion of un-

reacted explosive to reaction products. The rate of reaction takes the following form:

(4-17)

where  is the fraction of reacted explosive and  is time. In the above equation, there are seven user defined 

constants ( , , , , , , and ).
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The specific internal energies of the un-reacted and reaction material are not assumed to be in equilibrium 
and change according to:

(4-18)

and

In the above equations,  denotes the chemical energy of explosive per unit mass. The total volume  

is known from the deformed shape of the element.

The behavior of the ignition and growth detonation model in the mixed phase is described by the above eight 
equations. The following variables in a mixture element are solved for at the end of each time step:

( , , , , , , , )

For a known fraction of reacted explosive  in a time step, these variables are solved by iteration on 

volumetric changes until a pressure equilibrium ( ) in the element is reached. 

During the iteration process, the pressure difference is used as a convergence parameter to check for a 
converged solution. Each iteration adjusts the volume of un-reacted and reaction products in the mixed 
element. When a converged solution is obtained, a final check is performed to verify the assumption that the 
volumes of the mixture elements be additive: 

(4-19)

where

(4-20)

(4-21)

Finally, the speed of sound of the material is computed as the derivative of pressure with respect to density. 
For a mixture IG element, the speed of sound is computed as the average of the un-reacted and reacted state 
speed of sound based on volume fractions:
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where , as it follows from the pressure equilibrium assumption in the model.

The scheme of IG material model solution is given the following flow-chart.

EOSJWL – JWL Equation of State
The equation of state
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 =  

 =  

can only be used with Eulerian elements where: 

These parameters are defined in Appendix A, Reference 10.

Note: The constants a, m, n and Q and the variable  model afterburning. It uses the empirical approach 
of Miller and Guirguis. For details refer to Appendix A, Reference 33. A DETSPH entry 

must be used to specify the detonation time, the location of the detonation point, and the velocity of a 
spherical detonation wave. When no DETSPH entry is present, all the material detonates immediately and 
completely.

EOSMG - Mie-Gruneisen Equation of State
The Mie-gruneisen equation is useful in high-strain rate processes. The pressure is split in a part that only 
depends on density and a part that only depends on temperature.

The cold pressure is computed from the Rankine-Hugoniot equations and is given by

= specific internal energy per unit mass

= reference density

= overall material density
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Here,  is the reference density,  is the speed of sound,  is the volumetric compressive 

strain. The defining equation for the parameter  is the linearization of the relationship between linear shock 

speed  and particle velocity :

The thermal part of the pressure follows from thermodynamic considerations and reads

where  is the specific internal energy and the parameter  is given by

where  is the isothermal bulk modulus,  is the specific heat at constant volume and  is the 

volumetric thermal expansion coefficient.  is the Gruneisen parameter at reference density. The Gruneisen 

parameter at other densities is given by .
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EOSNA – Noble-Abel equation of state
The Noble-Abel equation of state is a first approximation to the van der Waals equation of gases. For details 
refer to Appendix A, Reference 34.

First assume a non-interacting gas. Then the pressures is given by the ideal gas laws as .

Introducing the specific volume defined by , is rewritten as .

Taking interactions into account, it is assumed that particles are hard spheres. Their effect is to reduce the 
volume so that the molecules can move in freely. This effect is modeled by replacing v by v-b: 

 or in terms of density as: 

For deriving the equations  R= . For details refer to Appendix A, Reference 38.
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EOSPOL – Polynomial Equation of State
The EOSPOL model defines a polynomial equation of state where the pressure is related to the relative volume 
and specific internal energy by a cubic equation.

In compression 

In tension 

where 

The EOSPOL equation of state can also be used to model viscous fluids; see also Material Viscosity in this 
chapter.

EOSTAIT – Tait Equation of State
The EOSTAIT model defines a equation of state based on the Tait model in combination with a cavitation 
model where the pressure  is defined as follows:

No cavitation ,

Cavitation ,

where 

=

=

= overall material density

= reference density

= specific internal energy per unit mass
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The pressure can not fall below the cavitation pressure , although the 

density can continue to decrease below its critical value .

The EOSTAIT equation of state can also be used to model viscous fluids, see Material Viscosity in 
this chapter.

Material Viscosity
Viscous fluid material models are available for the single material Euler solver, the Roe fluid solver, and the 
multi-material Euler solver. The viscous behavior is referenced from the entry to define the equation of state 
(EOSGAM, EOSPOL, or EOSTAIT. For these viscous materials, the stress tensor  is defined as:

and

where  denotes the bulk modulus,  the density,  the deviatoric stress tensor,  the pressure,  the 

deviatoric strain tensor, and  the coefficient of viscosity. The Euler solvers compute the stresses directly 
from the velocity gradients.

Material Failure
One of the nonlinear features of a material's behavior is failure. When a certain criterion (failure criterion) is 
met, the material fails and no longer sustains its loading and breaks. In a finite-element method, this means 

=

= overall material density
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that the element, where the material reaches the failure limit, cannot carry any stresses anymore. The stress 
tensor is effectively zero. The element is flagged for failure, and, essentially, is no longer part of the structure.

Failure criteria can be defined for a range of materials and element types. The failure models are referenced 
from the material definition entries.

There are several different failure models available in Dytran: 

In addition, for all material definitions defined for Lagrangian solid and shell (CQUAD4) elements, a failure 
criterion based on minimum time step can be defined using the following PARAM entry: 

FAILMPS – Maximum Plastic Strain Failure Model
The most commonly used failure model is the one that is based on a maximum equivalent plastic strain. The 
material fails completely when the plastic strain reaches beyond the defined limit. The element no longer 
carries any load and is removed from the calculation.

The failure model can be used with Eulerian and Lagrangian solid elements, shell elements, and Hughes-Liu 
beam elements. 

FAILEX – User Failure Subroutine 
You can define the failure mechanism in the user-written subroutine exfail.f. The subroutine must 
ultimately return the failure flag for the elements that it processes. The mechanism by which failure is 
described must programmed in the subroutine. The failure flag indicates either failure or no failure. Dytran 
processes the resulting failure flags and sets the element stresses to zero if the failure flag indicates material 
failure.

FAILEX1 – User Failure Subroutine
The FAILEX1 user-defined failure model uses essentially the same concept as the FAILEX failure model. In 
addition to ultimate failure, you can define a so-called property degradation prior to complete material 
failure. Property degradation means that the material properties that describe the material's elastic behavior 

FAILMPS Constant, maximum plastic strain
FAILEX User-specified failure
FAILEX1 User-specified (extended) failure
FAILEST Constant, maximum equivalent stress and minimum time step
FAILMES Constant, maximum equivalent stress
FAILPRS Constant, maximum pressure
FAILSDT Constant, maximum plastic strain and minimum time step
FAILJC The Johnson-Cook failure model

FAILSDT Constant, minimum time step
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are allowed to degrade to zero before the material completely fails. Effectively, property degradation 
influences the element's capability to carry loading as it gets weaker during this process.

Depending on the model that you program in the subroutine, you can have all properties degrade completely 
before material failure occurs, or you can define that when a certain property reaches a limit, material failure 
occurs. The routine should return the material properties and the failure flag for all elements that are input 
to the routine. Dytran processes the returned data accordingly in the stress and force calculations.

This model can only be used in combination with an orthotropic material model (DMATOR) for Lagrangian 
solid elements.

FAILEST – Maximum Equivalent Stress and Minimum Time Step 
Failure Model
This failure model uses the equivalent stress as the criterion for failure. When the equivalent stress (the first 
invariant of the stress tensor) reaches the defined limit the material loses its ability to carry deviatoric stresses. 
The hydrodynamic strength (the ability to sustain a pressure) is retained until the time-step criterion is 
reached. Usually after the first failure mode occurs, the element deforms heavily under its loading. To avoid 
element becoming so distorted that it controls the time step, you can define the time-step at which you wish 
to have the element removed from the calculation.

This failure model is available for Lagrangian solid elements only.

FAILJC – Johnson-Cook Failure Model
Failure is determined from a damage model. Damage is an element variable and increments are given by the 
plastic strain increment divided by a fracture strain. In addition the damage variable is transported along with 
material as it move from one Euler element to the other.

It is only available for the Multi-material Euler solver with strength. The use of coupling surfaces is 
not supported.

FAILMES – Maximum Equivalent Stress Failure Model
This failure model uses the equivalent stress (the first invariant of the stress tensor) as the failure criterion. 
When the element's equivalent stress reaches beyond the defined stress criterion the element fails completely 
and is no longer a part of the structure.

This failure model is available for Lagrangian solid elements only.

FAILPRS – Maximum Pressure Failure Model
The maximum pressure failure model defines that the material fails completely when the pressure in the 
element reaches the defined pressure. This model may be used to model a compressive failure mode in an easy 
way. The material will not fail on tensile loading.

This failure model is applicable to the orthotropic material (DMATOR) for Lagrangian solid elements only. 
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FAILSDT – Maximum Plastic Strain and Minimum Time Step Failure Model
This failure model uses the equivalent plastic strain as the failure criterion at which the deviatoric strength of 
the material is lost. When the plastic strain as defined for the failure model is reached, the material retains its 
hydrodynamic strength. After the first failure mode has occurred, the elements may deform heavily and start 
controlling the time step. To avoid this behavior, you can define the time step at which the element must be 
removed from the calculation or fails completely.

This failure model is available for Lagrangian solid elements only.

FAILDT – Minimum Time Step Failure Model
This (numerical) failure model defines the minimum time step that an element can reach before it is 
effectively removed from the analysis. Please note that this failure model is not based on physics, but is meant 
to maintain analysis effectivity. There are occasions where elements determine the time step although they 
are actually irrelevant to the analysis. For example, in cases where part of the structure breaks off due to 
physical material failure, the elements in the debris may control the time step. When these elements are no 
longer relevant but control the time step, your analysis may undesirably slow down. Using the time step based 
failure criterion then helps you in maintaining an effective analysis as the undesired elements are removed 
from the computation.

This failure model is available for all material definitions for Lagrangian solid and shell (CQUAD4) elements.

Spallation Models
A spallation model defines the minimum pressure prior to spallation. At present there is only one spallation 
model, PMINC, that defines a constant spallation pressure.

PMINC – Constant Minimum Pressure
A constant minimum pressure must be defined that must be less than or equal to zero. Note that the pressure 
is positive in compression. If the pressure in an element falls below the minimum pressure, the element spall 
and the pressure and yield stress are set to zero. The material then behaves like a fluid. When the pressure 
subsequently becomes positive, the material is no longer in a spalled state. The pressure can then decrease 
again to the specified minimum (the spall limit) before spallation occurs again.
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Figure 4-14  Minimum Pressure Cutoff

Artificial Viscosities
The types of artificial viscosity used in Dytran are bulk viscosity and hourglass viscosity. The parameters for 
bulk viscosity are material parameters. The hourglass-viscosity parameters are defined per property.

Bulk Viscosity
Artificial bulk viscosity is used to control the formation of shock waves. Shock waves are the propagation of 
discontinuities in velocity. The simplest example of a shock wave is a “square wave.” An ideal impact between 
two flat surfaces generates a square wave. Materials that stiffen upon deformation can produce a shock wave 
from a smooth wave profile. A finite element model of a continuous body cannot numerically represent this 
propagating discontinuity. When a time integration scheme without algorithmic damping (such as the 
explicit central difference method) is used to integrate the response, severe oscillations in amplitude trail the 
shock front. These oscillations can be traced to the limitations imposed by the finite frequency spectrum of 
the finite element mesh.

To control the oscillations trailing the shock front, artificial bulk viscosity is introduced. Artificial bulk 
viscosity is designed to increase the pressure in the shock front as a function of the strain rate. The effect on 
the shock wave is that it will be smeared over approximately five elements. Reducing the coefficients in an 
attempt to steepen the wave front may result in undesirable oscillations trailing the shock, a condition 
sometimes referred to as “overshoot.”

An artificial viscosity term  is added to the pressure. An artificial viscosity term can be considered as a 

modification to the pressure , which is replaced by:

The definition of the artificial viscosity term that modifies the pressure:
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where 

 is the characteristic element dimension and  is the material speed of sound.

The bulk viscosity equations contain both linear and quadratic terms that are given default values suitable for 
most situations. The values of the viscosity coefficients, BULKL for the linear viscosity, and BULKQ for the 
quadratic viscosity, can be changed on the respective fields of the material entries. Using the parameter BULKL, 
and BULKQ entries results in a global redefinition of the default values.

Hourglass Damping
The solid and shell elements in Dytran have only one integration point at the center of the element. This 
makes the program very efficient since each element requires relatively little processing, but it also introduces 
the problem of hourglassing.

For simplicity, consider the two-dimensional membrane action of a CQUAD4 element.

The element has four grid points, each with two degrees of freedom. There are, therefore, a total of eight 
degrees of freedom and eight modes of deformation. There are three rigid body modes, two translational 
modes, and one rotational mode.

= constant = 1.0

= constant = 0.0

CQ

CL

d c
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With a single integration point, two direct and one shear stress are calculated at the center of the element. 
This means that only three modes of deformation have stiffness associated with them.
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Two modes of deformation remain, that correspond to the linear stress terms. With a single integration point, 
these have no stiffness associated with them and are called the zero energy or hourglass modes.

When no measures are taken to stop these modes from occurring, they rapidly spread through the mesh and 
degrade the accuracy of the calculation (Figure 4-15), reduce the time step, and ultimately cause the analysis 
to abort when the length of the side of an element becomes zero.

Similar zero energy modes exist for the bending deformation of CQUAD4 elements, in CHEXA and 
CPENTAelements. CTRIA3 and CTETRA elements do not suffer from hourglassing, since no zero energy modes 
exist in these elements. 
 

Figure 4-15  Deformation of a Mesh Showing Hourglassing

Sophisticated methods for controlling hourglassing are available in Dytran. There are two forms: viscous and 
stiffness damping. The viscous form damps out hourglass modes and is carefully tuned so that other modes 
of deformation are not affected. The stiffness form applies forces to restrict the hourglass deformation by 
controlling the nonlinear part of the strain field that produces hourglassing. Normally the viscous forms work 
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well, but, in some instances, are not adequate. The stiffness form is more effective but tends to make the 
elements overly stiff, depending on the input parameters selected.

Each of the hourglass forms has slightly different characteristics. The default model is efficient and 
recommended for general use.

The default hourglass type can be reset using the PARAM, HGTYPE, HGSHELL, or HGSOLID option. The hourglass 
coefficient can also be specified using the PARAM, HGCOEFF, HGCMEM, HGCWRP, HGCTWS, or HGCSOL option. In 
addition, the hourglass type and coefficient can be specified for each individual property using the HGSUPPR 
entry.

Careful modeling can help prevent the occurrence of hourglassing in a mesh. Try to avoid sharp 
concentrations of load and isolated constraints. Rather, try to spread the loading and constraint over as large 
an area as possible. Some examples of how to avoid hourglassing are shown in Figure 4-16.

In the majority of cases, hourglassing does not cause any problem. In those instances where it does begin to 
occur, adjustment of the type of hourglass control and the hourglass viscosity should allow the analysis to be 
completed successfully. Extreme cases of hourglassing are normally caused by coarse meshes. The only 
solution is to refine the mesh.

Increasing the hourglass coefficient helps prevent hourglassing. However, excessively large values can cause 
numerical problems. Start with the default value and only increase it if excessive hourglassing occurs.
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Figure 4-16  Hourglass Promotion and Avoidance

Dynamic Relaxation
Dynamic Relaxation (DR) is a process that uses a damping concept to find the steady-state part of a dynamic 
solution to a transient response. In general, problems, especially those with highly nonlinear geometric and 
material behavior, can be treated with an explicit DR method. In many cases, however, the number of 
iterations needed to reach convergence can be very large.



112Chapter 4: Models
Dynamic Relaxation
Dytran offers two possible ways of dynamic relaxation to find a static solution of a structural mechanic 
problem. The static part of the dynamic solution is found by introducing damping in the iterative solution 
scheme that is used to solve the equations of motion.

Alpha Damping (VISCDMP)
The Alpha-type of dynamic relaxation uses a single damping parameter that is introduced in the central 
difference integration scheme of the equations of motion

(4-22)

where  denotes the grid-point velocity,  is the acceleration,  is the time step, and  is the dynamic 
relaxation parameter (the damping coefficient). The DR parameter can be individually defined for each 
available structural element type in Dytran and is input on the VISCDMP entry.

The choice of the DR parameter(s) depends on the natural frequencies of the system. The critical damping 
 should be taken to be approximately 5/3 times the critical damping (or 5/3 times the natural frequency 

times the time step).

Global, C-Matrix, or System Damping (VDAMP)
Dynamic relaxation that uses global damping as the damping device is based on a mass-spring-damper 
system. The equation of motion reads

(4-23)

The dynamic relaxation scheme uses the following C-matrix

(4-24)

All matrices are diagonal. Thus, each degree of freedom can be written as

(4-25)

A central difference time integration scheme is applied, yielding

, (4-26)

Combining Equations (4-25) and (4-26) leads to the following expression for the updated velocity
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where the parameter  is input on the VDAMP entry.

Equation (4-24) can also be written as

(4-27)

that describes the dynamic motion of a damped, single-degree-of-freedom system. The natural frequency of 
such a system is found to be

(4-28)

Critical damping is defined by

(4-29)

Or, in terms of the dynamic relaxation parameter

(4-30)

For a system with one degree of freedom, with a constant time step, and with , the 

dynamic relaxation parameter  can be related directly to a percentage of critical damping. This is shown in 
the following example. Such a direct relation is not possible for structures that have a lot of different natural 
frequencies. In those cases, the dynamic relaxation parameter should be set so that it corresponds to the lowest 
natural frequency. Also, the time step changes during the calculation, making it less easy to relate the 
relaxation parameter to a natural frequency. See Figure 4-17 and Figure 4-18 for solution for different values of 
dynamic relaxation parameters  and .
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Figure 4-17  Solution for Different Values of the Dynamic Relaxation Parameter ( )

Figure 4-18  Solution for Different Values of the Dynamic Relaxation Parameter ( )

α

β
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Remarks
Always be very careful when using damping in general, especially if there are large nonlinearities in the 
solution. Nonlinear solutions are path dependent, and artificially introducing a source of viscosity (damping) 
might interfere with the solution path.

In regard to the efficiency of the dynamic relaxation, keep in mind that it can require a large number of time 
steps to reach convergence, as mentioned previously. This is the case in those problems where the ratio 
between the largest and the smallest natural frequency is large. In such cases, the stable explicit time step is 
very small compared to the period corresponding to the largest natural frequency. It is very often 
advantageous to use an implicit code such as MSC.Nastran® in these situations to find the static part of the 
solution and use this as an initial state. Dytran also supports this capability (NASINIT).

Example 
 

User-defined Porosity Models
A customized porosity model can be defined by a user-defined subroutine in Dytran. By referencing a 
porosity definition (COUPOR from the coupling definition entry (COUPLE) you can choose several options. 
There are a number of pre-defined porosity models defined, but when you choose the POREX type on the 
COUPOR entry, Dytran calls the EXPOR subroutine in every time step. The model must then be programmed 
into the user subroutine and provide Dytran with required output to continue the computation.
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The theory behind the computation of fluxed quantities and the way in which impulse is exerted on the faces 
is explained below.

The user subroutine is required to return the volume and mass flow through each segment that the coupling 
surface is constructed from. Dytran then takes the void fraction of the element into account in case there is 
outflow at the segment:

The sign of the transported volume defines in- and outflow. A positive transported volume means outflow 
over the segment and a negative volume transport defines inflow over the segment. Given the volume and 
mass flow, the other fluxed quantities can be computed. The momentum in all three directions is fluxed 
according to:

where  for the x-, y- and z-direction and  is the velocity component. In case of outflow, the 

velocity component is taken as the element velocity from the element that the segment is connected to. In 
case of inflow, the velocity component uses the value as defined by the user in the user subroutine and 
returned to Dytran through the velocity arrays.

The total energy flux over the segment is computed as

where  is the total energy at the segment. In case of outflow, the total energy is taken to be the total energy 
in the element that the face is connected to. In case of inflow, the total energy is used from the value returned 
by the user subroutine.

After the flux computations have been performed, the resulting impulse is computed. The impulse acts on 
the area of the segment and is computed by taking the porosity factor into account:

where  is the impulse to be exerted on the segment,  is the pressure at the face,  is the porosity 

coefficient,  the segment area, and  the increment in time. The porosity factor must be within the 

range  where  implies a segment closed for in- or outflow, and  a segment that 
is fully open to in- or outflow.

Permeability
Permeability is defined as the velocity of gas through a surface area depending on the pressure difference over 
that area.

On the PERMEAB and PERMGBG entries, permeability can be specified by either a coefficient or a pressure 
dependent table:
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a. Coefficient:   Massflow = coeff∗pressure_difference

b. Table:

The velocity of the gas flow can never exceed the sonic speed:

where  is the gas constant of in- or outflowing gas, and  is the critical temperature.

The critical temperature can be calculated as follows:

where  is the temperature of outflowing gas.

Vmax Vsonic γRTcrit= =

γ Tcrit

Tcrit
Tgas
----------- 2

γ 1+( )
---------------=

Tgas
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Holes
Flow through holes as defined on the PORLHOLE or PORFGBG entries is based on the theory of one-dimensional 
gas flow through a small orifice. The formulas to calculate the velocity of the gas are the same as for the 
PORFLOW with the pressure method. The formulas are given in Chapter 2: Principles of the Eulerian and Lagrangian 
Solvers of this manual.

Flow between coupling surfaces through holes can also be defined by a permeability model by using the 
PERMCPL entry. The formulas to calculate the velocity of the gas are the same as for PERMEAB.

Hybrid Inflator Model
The hybrid inflator supports the inflow of multiple gases through an inflator subsurface, as well as providing 
a type of thermally ideal gas for which the specific heat at constant pressure  can be dependent on 

temperature.

In addition, the properties of the gas contained in an air bag will be changed based on the gas composition 
and temperature. Updating of gas constants is available for use together with INFLATR, IINFLATR1, INFLHYB, and 
INFLHYB1 inflator definitions, and with PORHOLE, PERMEAB, PERMGBG, and PORFGBG porosity definitions.

Ideal Gas Description
A thermally ideal gas is specified by the specific gas constant and the variation of specific heat at constant 
pressure with temperature. 

The specific gas constant for a gas is defined as: 

Where  is the universal gas constant and  the gas molar weight.

Using the specific heat as function of temperature, the specific internal energy of a gas as a function of 
temperature is found as:

We can now define  so that:

Mixture of Gas
A hybrid inflator is specifically meant to give an inflow of several gases with different properties. To account 
for the properties of these gases, it is necessary to keep track of the composition of a gas at a certain time, not 

cp
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only for the inflator but also for the gas mixture inside air bag. For use with hybrid inflators, it is assumed 
that instantaneous mixing takes place. This means the gas composition will be the same throughout the 
volume.

For an inflator, gas fractions are given as user input. For gas bags and Eulerian, gas fractions are based on the 
total mass of each gas at a certain time. Gas fractions are defined as follows:

Properties of the gas mixture inside a surface are based upon the principle that a mixture of (thermally) ideal 
gases is itself an ideal gas. This yields for the properties of the mixture:

Here  is the temperature of the gas mixture. This may be the inflow temperature of the inflator, the 
temperature inside a constant pressure gas bag, or the average temperature of all Eulerian elements that are 
not covered by the coupling surface. The latter is found as:

Energy/Work
A formulation for the change of energy in a closed volume can be found when  and  are a function of 

temperature and gas composition. This takes into account inflow (by hybrid inflators), outflow (by porosity) 
and energy loss (through convection and radiation).

We know:

where:
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For inflow of a certain mixture we find:

Similarly, for outflow:
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dU m de e dm⋅+⋅=

dqin
dt

---------- M· in t( ) cpin
* Tin( )⋅[ ] Tin⋅=

dqout
dt

------------- Mout t( ) cpout
* Tout( )⋅

·
[ ] Tout⋅=



Dytran Theory Manual
Air Bag Fabric

121
For the work done by the gas mixture the following holds:

Given the expressions above for a thermally ideal gas and a general mixture of these gases, this finally yields 
for the rate of temperature change in an enclosed volume:

Air Bag Fabric

Woven Fabric Material Model
This material model is intended for simulating woven materials as used in airbags. This model can only be 
referred to by triangular shell with one Gauss point when used in airbags. For other applications, it may be 
referred to by elements with membrane behavior (triangular quadrilateral shell with one Gauss point). 
Additionally, it can be referred to by the layered composite element property PBCOMP The model is based on 
a finite strain formulation and tracks the orientation of the fabric tows in both warp and weft direction (that 
is, warp ends and weft picks) as large shear strains occur.

To allow for an arbitrary orientation of the elements within the finite element mesh, the global warp/weft 
orientation vector supplied by the user is first transformed into local element system. Each warp/weft tow 
direction is now tracked with an angle  with respect to the local element system. The strain is a state variable 
for the tow. Since this is a model which tracks tow directions and uses total tow strain as a state variable, 
rotation of the stress state from  to  is not required. The orientation of the warp and weft tows must 
be updated instead. The strain rate in the warp ends and weft picks can now be incrementally updated.

(4-31)
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(4-32)

where the subscripts on the strain and angle (  and ) are used to indicate the warp ends ( ) and weft 

picks ( ). The warp/weft direct stress can be computed from

Definition of both linear and quadratic stiffness coefficients (  and ) allows for the simulation of 

fabric slack; that is, increasing stiffness with increasing strain.

Because some types of tow material are not able to carry compressive stresses, the model has a so-called no-
compression option. By switching compression off, the stress is zero when the fabric goes into compression 
and its stress remains zero while the fabric wrinkles. Tensile stress cannot occur until original stress-free flat 
condition is recovered.

After calculation of the warp/weft direct stresses, the stresses of (4-31) are transformed back into the local 
element coordinate system.

The shear carrying capacity is based on friction between the warp ends and weft picks. This can be accounted 
for by calculating the strain increment midway the warp and weft tows; that is,
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where  denotes the angle of the direction vector midway the warp and weft tows with respect to the X-

local element axis. The additional midway-stress due to friction can now be incrementally updated

in which

where  is the shear stiffness of the fabric material. The shear stiffness of a woven fabric material is not 

constant but depends on the shearing angle (see Intraply Shearing Test). At relatively small shearing angles, the 
initial shear stiffness can be assessed by

(4-33)

where the Poisson’s ratio  is taken to be 0.3.

The maximum shear stress is given by a friction coefficient times the RMS value of the direct warp and weft 
stresses (only if they are not equal to zero). Hence, a cut-off is applied on the midway-stress such that

(4-34)

where  is the friction coefficient to be determined by experiments (see Coefficient of Friction Test). In a similar 
way, the additional stresses due to friction are taken into account which are directed perpendicularly to the 
midway direction vector and in-plane of the element.
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The total additional stress can now be accounted for by first transforming it in the local element coordinate 
system.

and subsequently, it must be added to the stresses obtain by (4-33).

Determination of Fabric Material Parameters
This section is aimed at characterizing the mechanical behavior of woven fabric materials by performing 
experiments. Testing of composites (and particularly fabrics) has always been difficult in comparison to 
testing more conventional materials. Woven fabrics are well known for their property anisotropy. Moreover, 
woven fabrics are also dimensionally changeable. Besides simple uniaxial tests, rather unconventional tests 
should be carried out in order to obtain the material parameters needed for this fabric model.

Uniaxial Tensile Test
The input of nonlinear constitutive constants (  and ) allow for fabric slack; that is, increasing 

modulus with increasing tensile strain. Stress-strain behavior needs to be recorded in a uniaxial tensile test, 
and the elastic constants along warp and weft direction can be found by using a least-square fitting method.

Tensile test specimens must be cut along both the warp and weft direction as described in ASTM Test D-
3039 [Ref. 7.]. Strain gauges should be mounted along longitudinal and lateral directions. The specimens can 
be tested at a crosshead speed of 1 or 2 mm/min.

Intraply Shearing Test
Characterization of the in-plane shear properties is essential to modeling the mechanical behavior of fabric 
materials. Numerous shear test methods [Ref. 8.] have been developed to perform shear stiffness measurements 
for ordinary composite materials: +45° off-axis tensile test, the Iosipescu test, the 10° off-axis tensile test. 
However, there are limited studies available directed towards woven fabrics. In the work of Naik [Ref. 8.], the 
+45° off-axis test was found to be an excellent test method for the determination of in-plane shear modulus 
for plain weave fabric. Unfortunately, this simple test method is not applicable to a nonsquare fabric. For 
nonsquare fabrics in this test, there is no unique relationship between the applied load and the magnitude of 
shear stress in the test section.

Therefore, the test setup shown in Figure 4-19 can be constructed which is actually derived from the Treloar 
shear apparatus [Ref. 9.]. The fabric is vertically positioned in the setup by the clamping of two edges (AB and 
CD). Both clamp edges have to be positioned such that its direction coincides with the warp direction. The 
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direction of free edges AC and BD must be parallel to the weft direction. The upper clamp is fixed, whereas 
the lower clamp can freely move in the vertical plane.

The lower clamp is loaded in vertical direction by a weight W (force per unit clamp length). This fabric is 
forced to shear in its plane (with a shearing angle ) if a force F is applied to point C parallel to clamp edge 
CD. As soon as a shearing angle is established, an extra force is necessary to compensate the component due 
to the weight W on the shearing fabric. The restraining force R (per unit length) to overcome the intraply 
shearing resistance is therefore

(4-35)
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Figure 4-19  Schematic Diagram of Shearing Test Setup for Woven Fabrics

The lower clamp is loaded in vertical direction by a weight W (force per unit clamp length). This fabric is 
forced to shear in its plane (with a shearing angle ) if a force F is applied to point C parallel to clamp edge 
CD. As soon as a shearing angle is established, an extra force is necessary to compensate the component due 
to the weight W on the shearing fabric. The restraining force R (per unit length) to overcome the intraply 
shearing resistance is therefore

(4-36)

where  denotes the constant angle between clamp edge CD and the vertical line BD. During the intraply 

shearing test, the force F is gradually increased while the shearing angle  must be measured.
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A typical output of the shearing text setup is shown in Figure 4-20. It is very likely that the shear deformation 
is limited by the locking angle . At a certain point during the shearing of a fabric, the force necessary 

to shear the fabric increases rapidly. At this point, the fabric reaches its locking angle. Note that the initial 
slope  of the curve represents the shear stiffness of the fabric per unit thickness under the condition that 

relatively small shearing angles occur. Instead of the constant value given by (4-32), the shear stiffness  as 

a function of shearing angle  can be obtained from this test.

Figure 4-20  Example of the Output of the Shearing Test Setup

For the sake of completeness, the weight W should be varied (for example, 0.1 up to 0.3 N/cm) in order to 
show its invariance on restraining force R. At least, it should be sufficiently large to prevent wrinkling of the 
fabric material (otherwise, the strain state is not purely shear anymore).

Coefficient of Friction Test
As mentioned in Uniaxial Tensile Test, this fabric model allows for fabric slack — under loading the woven yarns 
can be straightened out. Due to the nature of woven fabrics, interlaced fiber bundles always have some degree 
of plane curvature. The reduction of curvature of the fiber bundles in one direction of a fabric simultaneously 
increases the curvature of the fiber bundles in the other direction. Stretching in both warp and weft direction 
results in contact forces between the warp and weft yarns. This is accompanied with friction on the contact 
surface of the interlacing fiber bundles. Consequently, a fabric in which, for example, the weft picks are 
stretched, increases the stiffness of the fabric in warp direction — the warp ends are effectively stiffer. It can 
be imagined that this holds up to a certain extent of straining. Beyond that extent, the friction stresses on the 
contact surface of the interlacing fibers cannot be sustained anymore.

In order to obtain the coefficient of friction as given in (4-33), the test setup shown in Figure 4-21 is necessary. 
The fabric (denoted by abcd) is stretched in between four rigid clamps. These clamps can only impose a load 
in either warp or weft direction. One clamp is fixed in space while the rest can move perpendicularly to its 
axis. The frame structure may be horizontally positioned.
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Figure 4-21  Schematic Diagram of Test Setup for Determination of Coefficient of Friction

The test setup is configured such that shearing of the fabric cannot occur during testing. This deliberately 
establishes a coefficient of friction without mixing it up with the shear deformation as mentioned in Intraply 
Shearing Test .

The test is initialized by prestraining the fabric in weft direction, such that its corresponding stress  

remains constant throughout the test. Subsequently, imposing a tensile load F on the fabric in warp direction 
and measuring its corresponding stress  versus  strain curve (Figure 4-22). It can be expected that this 

curve is somewhat higher than the one measured in a uniaxial tensile test (say ). In the uniaxial test,  

is zero so that it does not have any contribution to the direct stress in the warp ends. In the case that  is 

not equal to zero, the direct stress in the warp ends is increased by , where  is the angle between 

the warp and weft tows (  is constant here).
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Figure 4-22  Example of the Output of Stress-strain Curves of Fabric in Warp Direction Showing the Effect of 
Prestraining in Weft Direction

At a certain combination of warp and weft stresses, the additional increase in stress  (see Figure 4-22) 

cannot be carried anymore by friction forces on the crossover points of the yarns. It becomes smaller than the 
stress contribution due to prestraining in the weft direction. In formula form

(4-37)

If (4-37) is satisfied for a combination of  and , the coefficient of friction can be calculated by using

(4-38)

In order to get a consistent coefficient of friction, repeat the preceding procedure by choosing several levels 
of prestraining in the weft direction (that is, vary ) and take the mean value of .

Seat Belts
A seat belt constraint system can be modeled within Dytran using a special belt element. The element has the 
following characteristics:

 Tension-only nonlinear spring with mass.
 User-defined loading and unloading path.
 Damping is included to prevent high-frequency oscillations.
 Possible to prestress and/or feed additional slack.

A special contact algorithm is available to model the contact between the belt elements and an 
occupant model.

Δσt

Δσt σ2 θ2cos<

σ1 σ2

μ
Δσt

2θ σ1σ2cos
--------------------------------=

σ2 μ
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Seat Belt Material Characteristics
You can specify the following material characteristics on a PBELT entry:

Loading and Unloading Curves
The loading/unloading curves are defined in a TABLED1 entry specifying the force as a function of strain. The 
strain is defined as engineering strain

where  is the length at time  and  is the length at time zero.

The loading and unloading curves must start at (0, 0).

Upon unloading, the unloading curve is shifted along the strain axis until it intersects the loading curve at 
the point from which unloading commences. An example of a typical load, unload, and reload sequence is 
shown in Figure 4-23. 

εn In Io–
Io

---------------=

In n Io
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Figure 4-23  Seat Belt Loading and Unloading Characteristics

The unloading table is applied for unloading and reloading until the strain again exceeds the point of 
intersection. At further loading, the loading table will be applied.

Seat Belt Element Density
The density of the belt elements is entered as mass per unit length. The density is used during initialization 
to distribute the mass to the grid points. The grid points masses are used to calculate damping and contact 
forces.
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Damping Forces

A damping force is added to the internal force to damp high-frequency oscillations. The damping force  
is equal to

where  is the damping factor CDAMP1 as defined on the PBELT entry,  is the element mass,  and 

 denote the velocity of grid point 1 and grid point 2 of the element, respectively.  is the time step.

The damping force  is limited to

where  is the damping coefficient CDAMP2 as defined on the PBELT entry, and  is the internal force in 

the element.

Slack
Additional slack can be fed into the belt elements as a function of time. The slack is specified in the 
engineering strain and is subtracted from the element strain at time as

where  denotes the slack strain as found from the TABLED1 definition in the input file.

The force in the element is zero until the element strain exceeds the slack.

Prestress
The seat belt elements can be prestressed as a function of time. The prestress strain is specified in the 
engineering strain and is added to the element strain at time  as

where  is the prestress strain as found from the TABLED1 definition in the input file.

As a result, the elements build up a tensile force.
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Overview
The problem of shell structure with layered composite materials can be solved using a full integration 
technique or the classical lamination theory (CLT) (also known as equivalent stiffness method). With Dytran 
2001, both methods are available. The full layer integration technique is very general. It can simulate material 
behavior ranging from a simple linear material to a very complex material with non-linearity and failure 
mechanism. The newly implemented classical lamination theory is limited in the types of material behavior 
it can model. It can only analyze a simple linear layered material. The most significant advantage of CLT is 
the reduction in computational time and the simplicity in introducing the transverse shear stiffness. 
Therefore, the CLT implementation is very well suited for initial design studies in which not all detail in 
material behavior is required. 

Using CLT, the composite layers are transformed into one equivalent layer with equivalent cross-sectional 
properties. In this way, there is only one integration point needed across the thickness. Therefore the expected 
time speed-up in the constitutive routine is about the number of layers times the number of integration points 
compared to the full layered computation.

During the simulation, the material can fail if certain conditions of failure are met. There are various models 
of failure criteria for composite materials. Due to the fact the CLT technique only models linear material 
behavior, the analysis does not take the degradation of the element properties in case of failure into account. 
Instead, the onset of failure is detected and available for output purposes.

Basic CLT Theory
Classical Lamination Theory is meant for application with shell structures. A structure is assumed to behave 
like a shell when the thickness is relatively small compared to the other two characteristic lengths. In this way, 
the cross-sectional kinematics can be assumed to comply with the Kirchhoff or Timoshenko-Reissner-
Mindlin constraints.

For the Kirchhoff assumption, the cross-sectional stiffness of the shell consists of Membrane, Bending and 
Membrane-Bending coupling. The basic derivation of this stiffness is more or less established. The detail 
derivation of the stiffness can be found in textbooks about mechanical properties of composite materials, for 
example, see Appendix A, [Ref. 12.]. A brief derivation of the formulation is described below.

The stress strain relations in principal material coordinates for a laminate of an orthotropic material under 
plane stress are:

(5-1)

The reduced stiffness  is defined in terms of the engineering constants. In any other coordinate system 

in the plane of the lamina, the stresses are:
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(5-2)

In general, the stress-strain relations for the  layer of a multi-layer laminate can be expressed as follows:

(5-3)

Using the assumption of linear strain distribution across the thickness of the shell, the strain at any layer can 
be defined as a linear combination of the strain in the middle surface and the curvature of the section. The 
formal equation is given as follows:

(5-4)
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The resultant forces and moments acting on the laminate are obtained by integrating (5-4) through the 
laminate thickness. The entire collection of force and moment resultants for N-layered laminate depicted in 
Figure 5-1 can be expressed as follows:

(5-5)

(5-6)

where

(5-7)
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Figure 5-1  Multi-layered Cross Section

The ABD matrices can also be input directly through the MAT2 entry in combination with PSHELL entries. In 
this way, Dytran will not be able to calculate the stresses and strains at any layers. For input purposes, and to 
be consistent with MSC Nastran, the ABD matrices are normalized with certain factors. For more detailed 
descriptions the user should refer to the Dytran User’s Guide.

Transverse Shear Stiffness
The shell elements in Dytran, namely BLT, BELY, KEYHOFF, Hughes Liu and C0-TRIA, are all based on 
the Timoshenko-Reissner-Mindlin assumption where there is a transverse shear deformation across the 
thickness. In the case that the shell structure is very thin, this effect can be neglected. For isotropic material, 
the transverse shear factor for shell elements is 5/6. For composite shell the evidences say that the transverse 
shear stiffness is relatively lower than that of the in-plane stiffness. Therefore a “reasonable” transverse shear 
stiffness prediction is required.

One of the methods mostly used in a general finite element program is the “energy-based” method. Using 
this technique, the value of 5/6 for isotropic materials is met. One of the variants that is implemented in 
Dytran is the first order shear theory. The detailed derivation of the formula can be found in Appendix A, 
[Ref. 13.]. A brief summary of the derivation is described here.

The mean value of the transverse shear modulus  for the laminated composite is defined in terms of the 

transverse shear strain energy, , through the depth as follows:

(5-8)

A unique mean value of transverse shear strain is assumed to exist for both the x and y components of the 
element coordinate system, but for ease of discussion, only the evaluation of an uncoupled x component of 
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--------
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2
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the shear moduli is illustrated here. From (5-8) the mean value of transverse shear modulus may be written in 
the following form:

(5-9)

where  is the “average” transverse shear coefficient used by the element code and  is the local shear 

coefficient for layer . To evaluate (5-9), it is necessary to obtain an expression for . This can be 

accomplished by assuming that the x- and y-components of stress are de-coupled from one another. This 
assumption allows the desired equation to be deduced through an examination of a beam of unit cross-
sectional width, as shown in Figure 5-2.

Figure 5-2  Cross-section of beam

The equilibrium conditions in the horizontal direction and for total moment are:

(5-10)

(5-11)

Now, if the location of the neutral surface is denoted by  and  is the radius of curvature of the beam, the 

axial stress  may be expressed in the form

(5-12)
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(5-12) may be differentiated with respect to  and combined with Equations (5-10) and (5-11). In a region of 

constant , the result may be integrated to yield the following expression:

 for (5-13)

(5-13) is particularly convenient to use in the analysis of N-ply laminates because sufficient conditions exist 

to determine the constants  and the “directional bending center” .

In general for any ply, , the shear stress is:

(5-14)

At any ply interface, , the shear is therefore

(5-15)

where .

Note that the shear at the top face, , is zero and therefore

(5-16)

(5-16) proves that if  is the bending center, the shear at the top surface must be zero.

(5-14) could be substituted into (5-9) and integrated. A better form of (5-14), for this purpose, is:

(5-17)

where

(5-18)

Substituting (5-17) into (5-9) and, after a considerable effort of integrating, the results we obtain
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(5-19)

where

(5-20)

This expression for the inverse shear modulus for the x-direction may be generalized to provide for the 
calculation of each term in the two-by-two matrix of shear moduli.

(5-21)

where , and . The moduli for individual plies are provided through user input. Finally,

(5-22)

As an example, let us consider a single layer element. For this case let , , , and 

. Evaluating (5-19) we obtain:

(5-23)

and

(5-24)

as expected.

The  matrix can also be input directly through theMAT2  entry in combination with PSHELL  entries. In 

this way, Dytran is not able to calculate the stresses and strains at any layers. For input purposes, and to be 

1
Gx
------ T

El( )x
2

-------------   1
Gxi
--------Rxi

i 1=

N

=

Exi( )2Ti fxi zx xi 1––( )Ti
1
3
---Ti

2–+
 
 
 

fxi=

1
3
--- zx 2zi 1––( ) 1

4
---Ti–

 
 
 

zxTi
2 1

3
---zi 1–

2 1
4
---zi 1– Ti

1
20
------T+ +





+ +

Gkl[ ] T

El( )kl
2

--------------   G
kl
i[ ]

1–
Rki

i 1=

n


1–

=

k 1 2,= l 1 2,=

G3[ ]
G11 G12( )avg

G12( )avg G22

=

zi 1–
1
2
---T–= z 0= f0 0=

El ET2 12⁄=

R1 E2T5 1
12
----- 1

8
---– 1

20
------+ E2T5

120
-------------= =

1
G
---- 122T

E2T6
------------- E2T5

120G1
---------------⋅ 6

5G1
----------= =

G3



Dytran Theory Manual
Basic CLT Theory

141
consistent with MSC Nastran, the entries of matrix are normalized with a certain factor. For more detail 
descriptions, refer to the Dytran User’s Guide.

Failure Models
As mentioned above, the limitation of the CLT model is that it does not accommodate the after failure 
behavior, only the onset of failure. Since once the cross-sectional properties are reduced to an equivalent value 
they are constant throughout the analysis. If a situation happens that failure occurs, this approach is no longer 
valid. Therefore, to verify whether the analysis is valid or not, the condition of the laminate is checked against 
failure conditions when these have been defined.

There are various models for failure conditions in composite materials. They are all based on progressive 
failure criteria where the failure is checked in each layer or lamina. In this case, only the lamina-failure models 
that are already available in Dytran will be presented. These models are also used if the PCOMP entry (the 
general integration method) in combination with a MAT8A  definition is used to model laminates. The HILL 
and TSAI models only indicate a layer has failed, but no information about the mode of failure is provided. 
The STRSS MODTSAI, CHANG, HASHIN indicate both the failure and mode of failure. In Dytran, there 
are five modes of failure available, namely fiber-tension (FT), fiber-compression (FC), matrix-tension (MT), 
matrix-compression (MC) and matrix-shear (MS). It is also possible to combine these models using the 
COMBINAT option.

For a more sophisticated model that does not fit the pre-defined models, the full integration method allows 
you to use the USER option in combination with an external subroutine. This model is not available in CLT 
shells.

Maximum stress (STRSS)
This is the simplest model. The failure is only checked against the maximum stress criteria in the principal 
lamina direction, see Appendix A, [Ref.12.]. There are five stress criteria namely: in-plane shear ( ), fiber 

tensile stress (longitudinal direction, ), fiber compressive stress (longitudinal direction, ), matrix tensile 

stress (lateral direction, ), and matrix compressive stress (lateral direction, ).

S
XT Xc

YT Yc
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(5-25)

This model is only valid if the loading is uni-axial. However, the general practical problems involve at least a 
bi-axial if not tri-axial state of stress. The experimental results showed that for these cases the combination of 
the uni-lateral strength could predict properly the failure of a lamina. These models are described in the 
following sections.

Hill model
This model is also called Tsai-Hill one. The failure criteria is based on the following equations:

(5-26)
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where

(5-27)

The uni-axial strengths are defined in 0. The present implementation in Dytran is using the relation in (5-27). 
Therefore, the prediction of failure is not conservative, as there may be significant differences between tensile 
and compressive strength as can be seen in Figure 2-25 of [Ref. 12.] in Appendix A. Therefore the new logic 
is implemented now in Dytran. This is based on the sign of the stresses in the material principal direction. 
The tensile or compressive strengths will be used in (5-26) when the applied stresses are tensile or compressive, 
respectively. 

Tsai model
The Hill model, in 3-D space, is insensitive with the isotropic stresses and has a few shortcomings. While 
such an assumption may be a good approximation for initial yielding of a metal, it is certainly not valid for 
isotropic tension of a fiber composite, see References 12. and 14. in Appendix A. Therefore a more general 
model is needed. This model is normally known as Tsai-Wu theory; see [Ref. 12.]. The failure surface in stress 
surface is as follows:

(5-28)

For an orthotropic lamina under plane stress conditions, (5-28) can be expressed as follows:

(5-29)

where

(5-30)

The determination of the term  remains. Basically, it cannot be determined from any uni-axial test in 

the principal material directions. Instead, a bi-axial test must be used. Thus, for example, we can impose a 
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state of bi-axial tension described by  and all other stresses are zero. Accordingly, from (5-29), 

we can derive the following relation.

(5-31)

The value of  then depends on the various engineering strengths plus the bi-axial tensile failure stress, .

Modified Tsai-Wu
This model only considers the failure of the matrix. Therefore this model should be used in combination with 
other failure model. The failure criteria is as follows:

(5-32)

where the constants , , and  are defined in (5-30).

Hashin model
This model is based on the observation of the Tsai-Wu model that in case of isotropic tensile stress, the failure 
mode will depend on compressive stress. This is physically unacceptable. Moreover, the determination of 

 is subject to ambiguity; see Appendix A, [Ref. 14.] for more details. 

This model only considers fiber-tension, fiber-compression, matrix-tension and matrix-compression. The 
tension failure equations are as follows:

(5-33)

Please notice that the ultimate transverse shear is difficult to measure. However, no general failure criterion 
could avoid inclusion of this quantity. The implementation in Dytran assumes .
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Chang model
The original Chang mode, described in Appendix A, [Ref. 15.], only considers fiber breakage or fiber-matrix 
cracking and matrix cracking. The failure criteria is described as follows:

(5-34)

where

(5-35)

In Dytran, the matrix compressive failure is added. This model is based on the Hashin criterion that described 
as follows:

(5-36)

COMBINAT model
The possible combination of failure mode available in Dytran can be seen in Table 5-1. In case either of the 
MT or MC has MODTSAI criterion, both of them must be the same.

Table 5-1  Combination of Failure Modes

NONE STRSS MODTSAI CHANG HASHIN

FT x x x x
FC x x x
MT x x x x x
MC x x x x x
MS x x x
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Introduction
In the Eulerian approach, material is not attached to elements but can move from one Euler element to the 
other. Mass, momentum, and energy are element averages and are defined in the centers of the elements. This 
property is called cell-centered.

The equations solved are the conservation laws of mass, momentum and energy as given in equation (6-1). 
Here,  is the material density,  are the velocity components,  is the pressure,  is the bulk viscosity,  

is gravity and  is the specific total energy.  is a volume and  is its boundary. 

(6-1)

For Eulerian materials with strength, the pressure  is replaced by the stress tensor. The volume integrals 
represent the total mass, momentum, and energy in the Volume V. The surface integrals on the left signify 
transport out of the volume through parts of the area A. The surface integrals on the right represent the 
momentum and energy increase caused by forces acting on the boundary of the volume. The numerical 
scheme is a finite volume method. It is obtained by applying equation (6-1) to the material inside an Euler 
element and by specifying how transport terms are computed. The first equation signifies that the decrease 
of mass in an element equals the loss of mass trough the element boundary. In transporting mass between 
elements, mass should be conserved globally. This is achieved by looping across the element interfaces and 
adding the transported mass, momentum, and energy to the acceptor element and subtracting it from the 
donor element. In this way, the finite volume scheme conserves mass, momentum and energy.

In applying (6-1), it is assumed that density, velocity, and specific energy are constant across an Euler element 
and only depend on time. In addition, they are constant within one time step. This is consistent with a first-

order approach. The evolved time at cycle n will be denoted by . Element density, velocity, and specific 

total energy inside an element at cycle n is denoted by , , and , respectively.

Applying first-order time integration gives equation (6-2). The integration is from  to . Here  

denotes the mass inside the element,  momentum, and  energy. 

For the surface integrals that represent transport, the forward Euler method is used. Consequently, surface 
integrals are evaluated at the beginning of the time step. The surface integral with the pressure terms is 
evaluated using the new density and specific total energy
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(6-2)

The transport velocity, , depends on both the donor as well as the acceptor element and is given by 
the average of the donor and acceptor velocity. Multiplying the transport velocity with surface area and time 
step yields the transport volume. This volume is filled up with mass of the donor element. Multiplying this 
volume with the density of the donor element gives the transported mass. Likewise the transport volume 
times the donor velocity gives the transported momentum.

Since the fluid-structure interaction forms an integral part of the numerical scheme, we first discuss fluid-
structure interaction.

Fluid-structure Interaction
Material in an Euler mesh can interact with Lagrangian structures. Eulerian material can exert forces on a 
structure causing displacement and deformation. On the other hand, structures provide a barrier to Eulerian 
material. That is, Eulerian material cannot penetrate the structure and the structural surface determines 
which Euler element have the capacity to hold mass. Consider, for example, a tank shell surface. Euler 
Elements that are outside the tank surface cannot hold material and only elements that are partially or 
completely inside the surface have the capacity to contain mass. This surface defines the effective boundary 
of the Euler domain and is called the coupling surface. In most cases, the coupling surface consists of 
Lagrangian Elements. But, the interaction of Eulerian material with a Lagrangian solid is also possible. Then, 
the coupling surface consists of surface elements that have no Lagrangian model attached but only serve to 
enable interaction. In the following, we shall assume that the coupling surface is a Lagrangian shell surface. 
The coupling surface will also be referred to as the structural surface. 

The coupling surface consists of shell elements that deform under pressure loads from material inside the 
Eulerian domain. An explicit finite element solver solves the shell dynamics. An explicit Euler solver solves 
the fluid dynamics for the inside region of the coupling surface. The interaction between these two solvers 
occurs in two ways:

 The mass in the Euler elements exerts a pressure load on the Lagrangian elements associated with the 
structural surface. These loads constitute an additional set of boundary conditions for the finite 
element solver, resulting in new grid point accelerations and velocities for the structure. From the 
updated plastic strain or updated stresses of the shell elements, it is determined which elements are 
failing. Finally the structural grid points are moved using the new velocities
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 The structural grid points move giving the Euler mesh a new effective boundary. Consequently, the 
volume of mass in each element may change. Since density is mass divided by the volume of the 
mass, densities also change as does the pressures. In the following, we shall assume that the material 
is inside the coupling surface.

Numerical Scheme
The Euler elements are integrated in time by applying a finite volume method directly to the physical 
domain, avoiding the use of coordinate transformations. Therefore, the finite volume method is applied to 
the 3-D object that consists of that part of the Euler element that is inside the coupling surface. This is, in 
general, not a cube but a multifaceted object. For the 2-D case, this is shown in Figure 6-1.

Figure 6-1  The Boundary of an Euler Element

In Figure 6-1, the square represents an Euler element that is intersected by the coupling surface. Only that part 
of the square that is inside the coupling surface can contain mass. Therefore, this part is the effective volume 
of material in the element. The boundary of this effective volume consists of two types of surfaces:

 Euler element boundaries that connect two neighboring elements called Euler faces.
 Parts of the coupling surface that are within the Euler element. They are called polpacks (polyhedron 

packets).

The effective boundary of an Euler element consists of Euler faces and polpacks.

A polpack is the intersection of a coupling surface shell element with an Euler element and is completely 
inside an Euler element and a coupling surface shell element. In Dytran, an algorithm is available that 
computes these polpacks for any given, closed 3-D faceted surface and any 3-D Euler domain.

Faces refer to two Euler elements, whereas polpacks refer to only one Euler element. For both faces and 
polpacks, areas and normals are computed.

In Dytran, the finite volume method results from applying equation (6-2) to these 3-D objects. The volume 

 in equation (6-2) is the effective volume of the Euler element. Furthermore, the surface integrals are Vn 1+
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computed by summing over the faces and polpacks. A contribution of a polpack or a face to integrals 
signifying transport is called a flux.

When there is more than one material present in the simulation, the mass conservation law applies to each 
material separately. This means that for each material inside an Euler element, the density has to be 
monitored. In applying the momentum law, it does not matter whether there are several materials since all 
materials inside an element are assumed to have the same velocity. The energy equation is also applied to each 
material separately. 

First, consider simulations with only one material present. In the mass conservation law, the mass flux across 
a face gives:

Here,  is the mass in the Euler element,  is the velocity vector,  denotes the area vector of the face,  

is the time step,  denotes the element supplying mass, and  denotes the element 
receiving mass. In most cases, the coupling surface is not permeable, and there will be no transport across the 
polpacks. However, in case coupling surface shell elements have a porosity model assigned, the flux equations 
takes that into account.

The momentum in an element can increase by either transport of momentum, or by a pressure load working 
on the polpacks and faces. The pressure load contribution to this momentum increase is the surface integral 

. The force contribution of a face to the momentum increase of the element left to the face and 

right to the face reads:

Here  is the momentum of an element,  is the area vector pointing from the left element to the right 

element and  is a weighted average of the pressure in the two elements that are on the left and right of 
the face. These momentum updates clearly conserve the combined momentum of the left and right element.

For polpacks, the contribution is the same, but now the pressure at the polpack is given by the pressure in the 
Euler element that contains the polpack. To conserve momentum, the negative of this momentum 
contribution is put as a force on the coupling surface shell element that hosts the polpack. This is the way 
boundary conditions are imposed on the Lagrangian element constituting the coupling surface.

The energy equation is applied in a similar way.

The procedure for advancing the Euler domain with one time step is as follows:
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1. Do all finite element objects and contact. Move the finite element objects in accordance to their grid 
point velocities.

2. Using the new position of the finite element structures, compute new polpacks. Using polpacks and 
faces, compute the volume of the portion that is inside the coupling surface for all Euler elements.

3. Transport mass, momentum, and energy across all faces and permeable polpacks using the 
conservation laws. The flux velocity is the average of the left and right Euler element velocity. In case 
no right Euler element is available, the flux velocity is determined from an inflow condition and, in 
some cases, the velocity of the Euler element. Examples are holes and parts of surfaces that enable flow 
into the inside region of the coupling surface as a means of filling the inside region of the coupling 
surface. At the end of this step, element masses are fully updated.

4. For each Euler element, compute density from the new mass and volume and compute pressure from 
the equation of state using the new density.

5. Compute the effect of Euler element pressures to both structure as well as other Euler elements by 
going over respective polpacks and Euler faces. This effect contributes to the Euler element 
momentum. The transport contribution to the momentum increase has already been computed in 
step 3. At the end of this step, the element momentum and energy are fully updated.

6. Advance the Lagrangian shell elements associated with the coupling surface with one time step using 
the internal shell element forces, contact forces, and external forces from the Euler domain and 
compute new velocities on the grid points.

7. Compute a new stable time step based on the mesh size, speed of sound, and velocity. The stability 
criterion used is the CFL condition and applies to both, the tank surface as well as to the 
Euler elements.

Time Step Criterion
To maintain stability of the explicit scheme the time step should not exceed:

(6-3)

Euler With Strength
Deviatoric stress is a property of mass and is transported along with mass. Deviatoric stress in an element 
changes because masses with different stresses can enter the element and because strain increments raise 
stresses. When moving along with a piece of material the change in deviatoric stress denoted by  is given by:

(6-4)

Here the derivative is along the path of the moving mass and  denotes the velocity in the Euler element. 

Since the velocity of the moving mass equals the velocity in the Euler element. the total derivative is given by
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(6-5)

Therefore the change of deviatoric stress in an Euler element is given by 

(6-6)

This equation is not in conservation form and using the equation as it is would require the additional 
computation of shear stress gradients. By putting the equation in conservation form, gradient computations 
are not needed and the equation be solved using the divergence theorem.

To enable further use for other quantities like plastic strain consider

(6-7)

By using the continuity equation it can be written in conservative form.

(6-8)

This gives

(6-9)

dsij
dt

--------
∂sij
∂t

--------
∂sij
∂xk
--------

∂xk
∂t

--------+
∂sij
∂t

-------- uk
∂sij
∂xk
--------+= =

∂sij
∂t

-------- uk
∂sij
∂xk
--------+ 2μ

deij
dev

dt
-------------=

∂ϕ
∂t
------ uk

∂φ
∂xk
--------+ D=

∂ ρφ( )
∂t

-------------- ∂ρ
∂t
------φ ρ∂φ

∂t
------+=

∂ ρuk( )
∂xk

-----------------φ– ρ D uk
∂φ
∂xk
--------– 

 +=

∂ ρukφ( )
∂xk

--------------------– ρD+=

∂ ρφ( )
∂t

--------------
∂ ρφuk( )

∂xk
--------------------+ ρD=

1
ρ
--- ∂ ρφ( )

∂t
--------------

∂ ρφuk( )
∂xk

--------------------+
 
 
 

D=



Dytran Theory Manual
Euler With Strength

153
For stresses this becomes:

(6-10)

In this way, transport of stresses can be computed in close analogy to mass and momentum by transporting 
mass times shear stress. In the same way, transport of plastic strain is carried out.

Strain rates are computed from velocity gradients. They are obtained by use of the divergence theorem as 
follows:

(6-11)

Pressure can be either computed from density or updated from volume strain rates. The first corresponds to 
splitting the stress tensor computation into a hydrostatic part and a deviatoric part. The second computes the 
stress tensor without any splitting and uses the isotropic Hooke’s law in terms of strain rates. We show that 
the two approaches are equivalent. Consider computing pressure from the volume strain rates. 
Differentiation of the isotropic Hooke’s law gives

(6-12)

with  the bulk modulus. Using the continuity equation in the form

(6-13)

yields

(6-14)

The pressure in an element can be traced back by using (6-14).

(6-15)
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So to first-order in density Hooke’s law and the equation of state give the same pressure. Basing the pressure 
on the logarithm of the density ratio is expensive and the linearization is sufficiently accurate. Pressures are 
computed using the linearization. To account for rotation of material, the Jaumann correction is applied.

Multi-material Solver
In simulations with multiple materials, it is important to keep track of the interfaces between materials. For 
example, in fuel tank sloshing simulations, there is an interface visible between regions filled with fuel and 
regions filled with air. To handle these interfaces, several extensions of the transport logic and pressure 
computation are necessary. The extended transport logic is known as preferential transport and tries to 
maintain interfaces between materials. Consider, for example, the case of a blast wave of air in water. It is 
important that the interface between water and air during the expansion of the blast wave is maintained and 
does not deteriorate by the unphysical mixing of water and air.

To enable a multi-material simulation a certain amount of bookkeeping is needed. For every Euler element, 
the following information is available

 The number of materials inside the Euler elements
 For each material, the volume fraction, the material ID, the density, the mass, the specific energy, 

the total energy, and volume strain rates are stored. The volume fraction of a material is defined as 
the fraction of element volume that is filled with that material. 

The transport logic for multi-material amounts to:

 Compute the volume that is to be transported. This is  and this volume flux gives rise to a 
mass flux. Had there been only one material, the mass flux would have been the density times the 
volume flux, but now the donor element has several materials and each material has a distinct 
density and, therefore, the mass flux is split into several mass fluxes. Each material in the donor 
element has a distinct mass flux and this material specific mass flux can be easily converted into a 
volume flux by using the material density. Using this conversion the mass fluxes should give rise to 

volume fluxes that add up to a total volume flux that equals . Materials are transported 
out of the element until the prescribed total volume flux is reached. The only remaining issue is 
which materials should be transported first.

 Determine for both donor element as well as acceptor element which materials are present in the 
element.

 Look which materials are common to both elements.
 First transport any material that is common to both elements. Transport these common materials in 

proportion to their acceptor material fraction. A material is transported with the material density of 
the donor element and this material density translates a volume flux into a mass flux and vice versa. 
Subtract any mass that is transported from the flux volume. If there is sufficient mass of the common 
materials in the donor element, the whole flux volume is used to transport the common materials.

 If, after transport of the common materials, the flux volume is not fully used yet, transport materials 
in ratio to their donor material fraction.

V A⋅ Δt

V A⋅ Δt
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To illustrate how this procedure aims at preserving material interfaces, consider two adjacent Euler Elements 
and assume that flow is from the left element to the right element. The left element is filled with fuel and air 
and the right one is filled with only air. First, air is transported since air is the only material common to both 
elements. If there is sufficient air, only air is transported. If, during transport, there is no air left, transport of 
this common material is not able to use the full flux volume and also fuel is also transported. In both cases, 
the interface between fuel and air is maintained. 

The pressure computation for Euler elements with only one material is straightforward: the pressure readily 
follows from the equation of state and the density. For elements with more than one material, each material 
has a distinct equation of state and a distinct density and this results in a distinct pressure for each material. 
The pressure computation for these elements will be based on the thermodynamic principle of pressure 
equilibrium. Since masses of materials in Euler elements are only changed by the transport computation, 
these masses are fixed during the pressure computation. The volume taken up by each material in an Euler 
element is not known but determines the pressure inside the material. By adjusting the volumes of the 
materials simultaneously, pressure equilibrium is achieved. Therefore, the pressure computation amounts to 
an iterative process that iterates on the volumes of the materials inside the Euler element.

To understand the influence of the material volumes, consider an element with fuel and air. Suppose, that at 
the start of a cycle, there is pressure equilibrium and that during transport air enters the element. Because of 
the surplus of air, there is no longer pressure equilibrium. Physically, it is expected that the air will very slightly 
compress the fuel until pressure equilibrium is achieved. The compression of the air is just the adjustment of 
the material volumes of fuel and air. The material volume of air increases while the material volume of fuel 
decreases. 

Viscosity
Viscous stresses only contribute to the momentum balance:

(6-16)

Here the deviator shear stress tensor  is given by

(6-17)

The contribution of viscous dissipation to the energy balance law is small and is not taken into account. 
Velocity gradients are computed by Gauss’s law as given by (6-18). For boundary contributions, the imposed 
velocity boundary condition is used. Material in one element exerts a viscous force on material in the adjacent 
elements and leads to changes in momentum. The momentum transferred across an Euler element face is 
given by 
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(6-18)

The second term is most significant and requires a special treatment. This term is proportional to the normal 
velocity derivative at the face. It can be obtained by averaging the normal derivative over the left and right 
Euler element:

(6-19)

This leads to decoupling. To show this, consider an Euler element and two of its opposing faces. For both 
opposing faces, a viscous flux that is proportional to equation (6-18) is added to the Euler element. The net 
contribution is proportional to the difference of equation (6-18) for the two faces. In this subtraction, the 
normal velocity derivative of the element itself drops out. As a result, the contribution of viscous fluxes to the 
momentum increase of the Euler elements is only weakly coupled to the velocity gradient in the Euler 
element. In practice, decoupling will follow. To avoid this decoupling, the gradient is computed directly using 
the velocity difference between across the face, giving:

(6-20)

Also walls exert viscous stress on material and, at the wall, a no-slip condition is applied. Computing these in 
a specific local system enables a straightforward use of the no-slip condition. In this local system, the x-axis 
is along the normal of the boundary. The no-slip condition ensures that all tangential velocity derivatives are 
zero. In addition, normal derivatives are computed directly from the velocity difference between element and 
wall. 
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This leads to shear stresses at the wall:

(6-21)

These shear stresses are added to the momentum balance.

Fluid-structure Interaction with Interactive Failure
Consider a box filled with gas. If a blast wave is initiated inside the box, some parts of the box may fail and 
gas can escape through ruptures. To simulate this flow, the gas inside the box is modeled by an Euler domain 
and the box surface by shell elements. These shell elements form the coupling surface for this Euler domain. 
Once the shell elements of this box have failed, gas flows from the inner domain to an outer Euler domain 
that models the ambient. The shell surface also forms the coupling surface for this outer Euler domain and 
is, therefore, able to connect Euler elements inside the shell surface to elements outside the shell surface. Flow 
from one Euler domain to another is also possible through fully or partly porous segments.
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Figure 6-2  The Overlapping Mesh

Flow between Domains
Flow from one Euler domain to another takes place through either shell elements that are porous or that have 
failed. Flow through a segment can only take place if it is inside both Euler domains. In the following, let us 
assume that both Euler domains are sufficiently large. In general, a segment can intersect several Euler 
elements of the first Euler domain and the same applies to the second domain. Therefore, the segment 
connects several Euler elements in the first Euler domain to several Euler elements in the second domain. For 
an accurate and straightforward computation of flow through the segment, it is partitioned into subsegments 
such that each subsegment is in exactly one Euler element of each Euler domain. To carry out this 
partitioning, an overlapping Euler mesh is created that is the union of both Euler meshes. Then, for each 
element in this overlapping domain, the intersection with the segment is determined. Each intersection gives 
one subsegment that refers to both the original segment and to the element in the overlap domain. Since an 
element in the overlap domain is in exactly one element of both domains, the subsegment connects exactly 
one element in the first Euler domain to exactly one element in the second domain. Transport across this 
subsegment is straightforward because it closely resembles transport that takes place between the Euler 
elements that are within an Euler domain. In computing transport across the subsegment, the velocity of the 
segment has to be taken into account. If the segment is moving with the same velocity as the material on 
either side, no material will flow through the segment.
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The analysis of the physical behavior of fluids and gases is best solved using a Eulerian approach. The nature 
of the behavior of these types of materials is represented in a natural way using a finite volume description 
based on the Euler equations of motion. Dytran has an accurate solver available that allows you to analyze 
the behavior of fluids and gases, coupled to structures if necessary. The solution approach is based on a so-
called Riemann solution at the element faces that defines the fluxes of mass, momentum and energy, the 
conserved problem quantities.

This chapter gives a more detailed explanation of the theory behind the Riemann-based Euler solver, its 
boundary condition treatment, and accuracy in time and space.

The nonviscous flow of a fluid or a gas is fully governed by the Euler equations of motion. We will use the 
equations in their conservative form:

(7-1)

where  is the state vector and ,  and  represent the fluxes of the conserved state variables. 
They are defined as follows:

(7-2)

Equation (7-1) describes the conservation of mass, momentum and energy. In equation (7-2)7-2,  is the 

material density, , , and  are the velocity components,  is the pressure and  the total energy. For a 
gas, we can close the system (note that we have five equations with six unknowns) by adding the equation of 
state for a calorically perfect gas (the “gamma law equation of state” in Dytran):

(7-3)

In equation (7-3),  denotes the specific internal energy of the gas and  is the ratio of specific heats. There 
exist more equations of state for gases, but most gases can be described as calorically perfect gases, in which 
case equation (7-3) applies. 

For a fluid in its simplest form, we may use a so-called “simple bulk” equation of state:

(7-4)

In (7-4),  is the material bulk modulus and  is the reference density at which the material has no pressure. 

Also, for fluids there are more equations of state, like a full polynomial or Tait’s equation of state. Both are 
implemented in the approximate Riemann solver that Dytran uses, but the method of implementation is 
similar to the simple bulk equation of state and is not described in detail here.
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Numerical Approach
The conservation laws as described by equation (7-2) are numerically solved by an upwind, cell-centered finite 
volume method on unstructured 3-D meshes. We briefly describe the solution method here.

When the conservation laws are written in integral form, by integrating over an arbitrary volume, the finite 
volume (discretized) method becomes apparent when we consider each element in an Eulerian mesh as a 
finite volume on which we have to solve the conservation laws as described by equation (7-2). The integral 
form of equation (7-2) when using Gauss’s integral theorem:

(7-5)

From equation (7-5), it becomes apparent that the fluxes of mass, momentum, and energy have to be 
integrated normal to the boundary of the volume or its surface. When we use the rotational invariance of the 
Euler equations of motion, the integral form can be rewritten using the transformation matrix that describes 
the transformation of the state variables in a direction normal to the surface:

(7-6)

where  denotes the state vector, transformed to a coordinate system with the local x-axis in the direction of 
the normal to the surface. When we then make the step to a discretized form, by defining the volume as the 
volume of a finite element (an element of the Euler mesh), and the surface defined by the faces spanning the 
element, equation (7-6) becomes a local one-dimensional system of equations for each face of the element with 
the local x-axis in the direction of the normal to the element’s face. Note that the fluxes in the local y- and z-
direction do not contribute to the change of the state variable. The system of equations to solve for each 
element face thus becomes:

(7-7)

where  defines the x-direction normal to the element’s face. Considering the fact that each face has a left 
and a right element connected to it, we can view the state variables in the left- and right-connected element 
as initial conditions for the solution of the flux normal to the face:

(7-8)
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Equations (7-7) and (7-8) describe a so-called Riemann problem. Thus, the solution for the fluxes at the 
element faces amounts to solving a local 1D Riemann problem for each of the faces of the element, 
considering the left and right state of the fluid or the gas. The contribution of the face fluxes result in the state 
change in the element as a function of time as denoted by the first term in equation (7-7). The fluxes on the 

faces are determined using a flux function,  by which, using Equations (7-6), (7-7), and (7-8), the 

discretization becomes:

(7-9)

In equation (7-9),  denotes the element number,  the element volume,  the face numbers of the element, 

and  the associated face area.

Using a flux difference scheme, the flux function can be written as:

(7-10)

The flux difference terms in equation (7-10) are defined as:

(7-11)

When we use the eigenvectors, the eigenvalues and the wave strengths that can be found from a 
diagonalization of the Jacobian matrix of the Euler equations, we arrive at a simple definition of the flux 
function. Note that the shape of the eigenvectors, eigenvalues and the wave strengths depend on the type of 
equation of state the flux function is constructed for. In general terms, the numerical flux function used in 
the scheme is defined as:

(7-12)

After some rewriting of equation (7-12), we find:

(7-13)
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Using the ideal gas equation of state (gamma-law equation of state in Dytran), we find for the wave strengths:

(7-14)

And for the associated eigenvectors:

(7-15)

In the above equations, the quantities denoted by a tilde are weighted quantities according to:

(7-16)

All quantities are averaged using the above definition, except for the density:

(7-17)

The above described flux evaluation scheme is called an approximate Riemann scheme due to the fact a 
linearization using the weighted quantities at the element faces is applied. As a result, the scheme exhibits an 
artifact, namely that it does not satisfy the entropy inequality. The entropy inequality states that the entropy 
of a system can only remain constant or increase. Due to the artifact, the scheme is able to also capture 
mathematically sound, but physically impossible discontinuities like expansion shocks. This is easily repaired 
by adding a so-called entropy fix to the scheme as described in the next section.

Entropy Fix for the Flux Difference Riemann Scheme
As described earlier, a so-called entropy fix must be added to the scheme in order to have the scheme correctly 
decompose a expansion discontinuity into a physically correct expansion fan. The entropy fix amounts to 
adding some numerical viscosity or dissipation to sonic points, shocks, and contact discontinuities. The 
dissipation is added only at those points where any one of the system’s eigenvalues vanishes.

The entropy fix can be written in terms of a simple function:

α̃1
Δp ρ̃ ãΔu⋅–
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(7-18)

The function works automatically on the eigenvalues of the system, represented in (7-18) by , and is 

governed by a single parameter  that depends on the flow field:

(7-19)

Second Order Accuracy of the Scheme
When we consider the flux function as given in general by equation (7-13), it does not say anything about the 
order of accuracy at which the face fluxes are computed. The accuracy is governed by the way in which the 
left and the right state variables are determined.

A first order scheme results when the left and the right state variables are taken as the values the state variables 
have at the left- and the right-element center; a so-called first order extrapolation to the face.

When we increase the stencil by which we determine the left- and right-state variable values at the face by 
including the left-left and the right-right element, we arrive at a second order accurate scheme in space. A so-
called nonlinear limiter that avoids the creation of new minimum or maximum values limits the second order 
left- and right face values of the state variables. Such a scheme is called total variation diminishing, or TVD. 
Near sharp discontinuities the scheme reverts to locally first order as to introduce the necessary numerical 
viscosity to avoid oscillations in the solution near the discontinuity.

The second order approximate Riemann solver in Dytran applies the Superbee limiter. The second order 
scheme can be formally written as:

(7-20)

for the left side of the face, with:

(7-21)

For the right side of the face, the second order approximation is defined by:
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(7-22)

with:

(7-23)

The upwind scheme is defined for  and the limiter function  is the Superbee limiter:

(7-24)

Time Integration
The set of equations is integrated in time using a multi-stage scheme. For the second order accurate solution, 
a three-stage time integration scheme is used:

(7-25)

In equation (7-26),  denotes the state variable value in the k-th integration stage,  the stage 

coefficients, and the flux contributions  are defined as:

(7-26)

using the state variables at each stage of the integration. The final step then gives the solution of the state 
variables at the new time level.
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